Shielding Calculation for Nuclear Medicine Services

How to Cite

Madero Ramirez, D. A., Orejuela, D. M., & Plazas De Pinzon, M. C. (2017). Shielding Calculation for Nuclear Medicine Services. TECCIENCIA, 12(23), 11–17. https://doi.org/10.18180/tecciencia.2017.23.2


Nuclear medicine is a medical specialization that uses radioactive materials injected into the body to diagnose and treat human diseases. The use of different radionuclides and high amounts of radioactive materials makes it necessary for the facilities where these procedures are conducted to evaluate the corresponding shielding to comply with the design dose limits of a facility and avoid radiological accidents [1] as recommended and accepted in international publications, like the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). This work compares two methods to calculate the shielding necessary to guarantee que las medicine service zones be safe from ionizing radiations. The first method consists in calculating the transmission factor B to find the thickness of the material necessary to protect the zone of interest, this factor is calculated by bearing in mind the occupancy factors, workloads, use factor, and the design objective dose limit. Upon obtaining the transmission factor B, half value layer (HVL) or tenth value layer (TVL) tables are used for each construction material, obtaining the thickness of the material. The other method is the calculation of is the calculation of rates of exposure through the air Kerma rate constant, then the XCOM databases are used, which were developed by the National Institute of Standards and Technology (NITS) to obtain the attenuation coefficient, used in the law of exponential attenuation; finally, the necessary thickness of the material is obtained to reach the design objective. Finally, the principal differences between both methods are shown and an analysis is performed of the shielding optimization, seeking to set criteria to make recommendations to nuclear medicine services on optimal shielding..



ICRP, “ICRP Publication 86. Prevention of accidental exposures to patients undergoing radiation therapy. A report of the International Commission on Radiological Protection,” Ann. ICRP, vol. 30, no. 3, pp. 7–70, 2000.

C. Chiesa, V. De Sanctis, F. Crippa, and M. Schiavini, “Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67, and iodine-131 radiotracers and fluorine-18,” Eur. J. Nucl. Med., vol. 24, no. 11, pp. 1380–1389, 1997.

F. A. Mettler Jr and M. J. Guiberteau, Essentials of nuclear medicine imaging. Elsevier Health Sciences, 2011.

B. M. Methe, “Shielding design for a PET imaging suite: a case study,” Health Phys., vol. 84, no. 5, pp. S83–S88, 2003.

E. Smith, “Properties, uses, radiochemical purity and calibration of Tc99m,” J. Nucl. Med., no. 5:871–882, 1964.

I. Zolle, H. Spies, H.-J. Pietzsch, E. Chiotellis, Z. Kovács, O. Bremer, and G. Jánoki, Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

H. C. Hoyt and J. W. M. DuMond, “Gamma Radiation Following Decay of I 131,” Phys. Rev., vol. 91, no. 4, pp. 1027–1027, Aug. 1953.

M. R. A. Pillai, S. Chakraborty, T. Das, M. Venkatesh, and N. Ramamoorthy, “Production logistics of 177 Lu for radionuclide therapy,” Appl. Radiat. Isot., vol. 59, no. 2, pp. 109–118, 2003.

Autoridad Regulatoria Nuclear, Norma básica de seguridad radiológica, no. AR 10.1.1. Argentina, 2003.

J. Valentin, “ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection,” Ann. ICRP, vol. 37, no. 2–4, 2007.

C. Varela, M. Díaz, G. M. López, L. A. Torres, M. A. Coca, and J. González, “Aplicación regulatoria de criterios de calidad a la instrumentación de Medicina Nuclear,” Tc, vol. 32, no. 51Cr, p. 192Ir, 2008.

NCRP, “NCRP Report No. 151 - Evaluation for Megavoltage X-and Gamma-Ray Radiotherapy Facilities,” 2005.

K. D. Steidley, “NCRP Report No. 49: Structural Shielding Design And Evaluation For Medical Use Of X-Rays And Gamma Rays Of Energies Up To 10 MeV,” J. Nucl. Med. Technol., vol. 5, no. 2, p. 107, 1977.

D. L. Miller, E. Vañó, G. Bartal, S. Balter, R. Dixon, R. Padovani, B. Schueler, J. F. Cardella, and T. De Baère, “Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology,” Cardiovasc. Intervent. Radiol., vol. 33, no. 2, pp. 230–239, 2010.

FAO, IAEA, ILO, OECD/NEA, PAHO, and WHO, “Safety Series No. 115: International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources.” IAEA, Vienna, 1996.

F. A. Mettler Jr, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses in radiology and diagnostic nuclear medicine: a catalog 1,” Radiology, vol. 248, no. 1, pp. 254–263, 2008.

M. M. Ninkovic, J. J. Raicevic, and F. Adrovic, “Air kerma rate constants for gamma emitters used most often in practice,” Radiat. Prot. Dosimetry, vol. 115, no. 1–4, pp. 247–250, 2005.

H. Wasserman and W. Groenewald, “Air kerma rate constants for radionuclides,” Eur. J. Nucl. Med., vol. 14, no. 11, pp. 569–571, 1988.

A. McNair, “Radiation Quantities and Units: International Commission on Radiation Units and Measurements ICRU Report 33,” John Wiley & Sons, Ltd., Washington D.C. USA, Sep. 1981.

H. E. Johns and J. R. Cunningham, The Physics of Radiology, 3rd ed. Springfield, Illinois, USA: C.C. Thomas, 1969.

M. Núñez, “Control de calidad de los sistemas de detecci{ó}n usados en Medicina Nuclear,” Esc. Univ. Tecnol. M{é}dica. UdelaR, Montevideo, Uruguay. Com. Tecn{ó}logos ALASBIMN, 2008.

NIST, “X-Ray Mass Attenuation Coefficients,” NIST. [Online]. Available: http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/concrete.html.

B. Lauridsen, “Table of Exposure Rate Constants and Dose Equivalent Rate Constants,” Roskilde, 1982.

K. Eckerman and A. Endo, “ICRP Publication 107. Nuclear decay data for dosimetric calculations.,” Ann. ICRP, vol. 38, no. 3, pp. 7–96, 2008.

L. M. Unger and D. K. Trubey, “Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment,” Tennessee, United States, 1982.

W. A. Volkert, W. F. Goeckeler, G. J. Ehrhardt, and A. R. Ketring, “Therapeutic radionuclides: production and decay property considerations.,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med., vol. 32, no. 1, pp. 174–185, 1991.

E. B. Podgorsak, Radiation oncology physics: a handbook for teachers and students. Vienna: IAEA, 2005.

Y. Yi, M. G. Stabin, M. H. McKaskle, M. D. Shone, and A. B. Johnson, “Comparison of measured and calculated dose rates near nuclear medicine patients,” Health Phys., vol. 105, no. 2, pp. 187–191, 2013.

B. Archer, J. Thornby, and S. Bushong, “Diagnostic X-ray shielding design based on an empirical model of photon attenuation.,” Health Phys., 1983.

D. J. Simpkin and R. L. Dixon, “Secondary shielding barriers for diagnostic x-ray facilities: scatter and leakage revisited.,” Health Phys., vol. 74, no. 3, pp. 350–365, 1998.

S. Ivanova and A. Artinyan, “Calculations and Analysis of the Radiation Protection of PET/CT Center,” BgNS Trans., 2015.

M. W. Groch and W. D. Erwin, “SPECT in the year 2000: basic principles.,” J. Nucl. Med. Technol., vol. 28, no. 4, pp. 233–244, 2000.

M. Bocher, A. Balan, Y. Krausz, Y. Shrem, A. Lonn, M. Wilk, and R. Chisin, “Gamma camera-mounted anatomical X-ray tomography: technology, system characteristics and first images,” Eur. J. Nucl. Med., vol. 27, no. 6, pp. 619–627, 2000.

M. Madsen, J. Anderson, J. Halama, and J. Kleck, “AAPM task group 108: PET and PET/CT shielding requirements,” Med. Phys., vol. 33, no. 1, pp. 4–15, 2006.

H. Remy, I. Borget, S. Leboulleux, N. Guilabert, F. Lavielle, J. Garsi, C. Bournaud, S. Gupta, M. Schlumberger, and M. Ricard, “131I effective half-life and dosimetry in thyroid cancer patients,” J. Nucl. Med., vol. 49, no. 9, pp. 1445–1450, 2008.

J. G. McAfee, C. F. Fueger, H. S. Stern, H. N. Wagner, and T. Migita, “Tc99m pertechnetate for brain scanning,” J. Nucl. Med., vol. 5, no. 11, pp. 811–827, 1964.

ARN, “Norma básica de seguridad radiológica. Boletín Oficial No. 20/11/01,” Argentina, 2001.

ICRP, “ICRP Publication 60. 1990 Recommendations of the International Commission on Radiological Protection,” Ann. ICRP, vol. 21, no. 1–3, 1991.

OIEA, “Aspectos físicos de la garantía de calidad en radioterapia: Protocolo de control de calidad.” OIEA, Viena, Austria, 2000.

N. Singh, K. J. Singh, K. Singh, and H. Singh, “Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 225, no. 3, pp. 305–309, 2004.

B. R. Archer, T. R. Fewell, B. J. Conway, and P. W. Quinn, “Attenuation properties of diagnostic x-ray shielding materials,” Med. Phys., vol. 21, no. 9, pp. 1499–1507, 1994.

NCHPS, “North Carolina Chapter of the Health Physics Society (NCHPS).” [Online]. Available: http://hpschapters.org/northcarolina/nuclide_information_librar y.php3. [Accessed: 06-Sep-2010].

I. Balseiro, “Sistema de Protección para la Radiación Externa.” [Online]. Available: http://www.ib.cnea.gov.ar/~protrad/biblioteca/Blindajes de Fuentes Radiactivas.pdf. [Accessed: 08-Sep-2010].

NIST, “National Institute Standards and Technology.” [Online]. Available: http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. [Accessed: 09-Sep-2010].

U. of M. Occupational Safety & Environmental Health, “Technetium - 99m.” University of Michigan, 1994.

NCRP, “Report No. 147 - Structural shielding design for medical X-ray imaging facilities.,” National Council on Radiation Protection and Measurement, 2004.

J. H. Hubbell and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 meV for elements z = 1 to 92 and 48 additional substances of dosimetric interest,” 1995.

J. Maddahi, H. Kiat, K. F. Van Train, F. Prigent, J. Friedman, E. V Garcia, N. Alazraki, E. G. DePuey, K. Nichols, and D. S. Berman, “Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease,” Am. J. Cardiol., vol. 66, no. 13, pp. E55–E62, 1990.

E. G. DePuey, K. Nichols, and C. Dobrinsky, “Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT.,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med., vol. 34, no. 11, pp. 1871–1876, 1993.

M. D. M. D. V. Torres, A. L. G. Cardo, S. J. O. Lozano, and J. M. J.-H. Garc’ia, “Técnicas de imagen en el diagnóstico de metástasis óseas: Imaging techniques in the evaluation of metastatic bone disease,” Rev. Española Med. Nucl., vol. 26, no. 4, pp. 237–258, 2007.


Download data is not yet available.