Tuning up Fuzzy Inference Systems by using optimization algorithms for the classification of solar flares


Fuzzy Sets
Solar Flares.

How to Cite

Ramos, L. A., Ramos, A. F., Melgarejo, M., & Vargas, S. (2017). Tuning up Fuzzy Inference Systems by using optimization algorithms for the classification of solar flares. TECCIENCIA, 12(23), 35–42. Retrieved from http://revistas.ecci.edu.co/index.php/TECCIENCIA/article/view/425


In this work we describe the implementation and analysis of different optimization algorithms used for finding the best set of parameters for a Fuzzy Inference System intended to classify solar flares. The parameters will be identified among a universe of possible solutions for the algorithms, and the system will be tested in the particular case of dealing with the aim of classifying the solar flares.



Heinrich Schwabe and Hofrath Schwabe. “Sonnenbeobachtungen im Jahre 1843. (German) [Observation of the Sun in the year 1843]”. In: Astronomische Nachrichten 21 (1843), pp. 233–236. DOI: 10.1002/asna.18440211505.

R. Qahwaji and Colak. “Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations. [On the electrodynamics of moving bodies]”. In: T. Sol Phys 241 (2005), pp. 195–211. DOI: 10.1007/s11207-006-0272-5.

T. Bai and P. A. Sturrock. “Classification of solar flares”. In: Annual review of astronomy and astrophysics 27 (1989), pp. 421–467. DOI: 10.1146/annurev.aa.27.090189.002225.

Jyh-Shing Roger Jang. “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE Transactions on Systems, Man, and Cybernetics 23 (1993), pp. 665–685. DOI: 10.1109/21.256541.

Miguel Melgarejo, Alvaro Prieto, and Carlos Ruiz. “Modelado de sistemas difusos basado en el algoritmo genético compacto”. (Spanish) [Modeling of fuzzy systems based on the compact genetic algorithm]. In: Proceedings of ASAI 2011, Argentine Symposium on Artificial Intelligence. Universidad de Palermo, Buenos Aires, Argentina (2011), pp. 180–191.

Andrea Villate, David Rincón, and Miguel Melgarejo . “Evolución diferencial aplicada a la sintonización de clasificadores difusos para el reconocimiento del lenguaje de señas”. (Spanish) [Applying Differential Evolution to Tune Fuzzy Classifiers Intended for Sign-Language recognition] In: Ingeniería y Universidad: Engineering for Development 16 (2012), pp. 397–413.

Stephan Rudlof and Mario Köppen. “Stochastic Hill Climbing with Learning by Vectors of Normal Distributions”. In: Proceedings for Nagoya 1996, Online Workshop on Soft Computing (WSC) no. 1 (1996), pp. 60–70.

Kumara Sastry and David E. Goldberg. “Probabilistic Model Building and Competent Genetic Programming”. In: Genetic Programming Series vol 6. (2003), pp. 205–220. DOI: 10.1007/978-1-4419-8983-3_13.

Stuart J. Russell and Peter Norvig. “Artificial Intelligence: A modern approach”. Pearson Education, 2003. ISBN: 01379039523.

Jason Brownlee. “Clever Algorithms: Nature-Inspired Programming Recipes”. Jason Brownlee, 2011. ISBN: 9781446785065.

Thomas C.W. Landgrebe, and Robert P.W. Duin. “Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008), pp. 810-822. DOI: 10.1109/TPAMI.2007.70740.

Fagerland M.W. and Sandvik L. “Performance of five two-sample location tests for skewed distributions with unequal variances”. In: Contemp Clin Trials, vol. 30, no. 5 (2009), pp. 490–496. DOI: 10.1016/j.cct.2009.06.007.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization”. In IEEE Transactions on Evolutionary Computation, vol. 1, no. 1 (Apr 1997), pp. 67-82. DOI: 10.1109/4235.585893


Download data is not yet available.