

# <sup>3.</sup> Análisis de Parámetros para la Producción de Biodiesel a partir de Aceite de Cocina Usado

Analysis of Parameters for the Production of Biodiesel from Waste Cooking Oil

Marqqie Lisbeth Tovar Torres

Universidad ECCI, Bogotá, Colombia

mtovart@ecci.edu.co

#### RESUMEN

La transesterificación del aceite de cocina usado se estudió con la finalidad de analizar los parámetros de producción de biodiesel, variando la relación molar alcohol-aceite, temperatura y cantidad de catalizador. La reacción se llevó a cabo durante 90 minutos, utilizando aceite de cocina usado, metanol e hidróxido de potasio (KOH) como catalizador. Los resultados mostraron que la mayor producción de biodiesel se llevó a cabo a condiciones de reacción de 60°C, 1:6 relación aceite-alcohol y 1% KOH. La densidad obtenida se encuentra dentro de los estándares de la norma ASTM. De igual manera, se evidenció que el incremento de la cantidad de alcohol y de temperatura favorece mayor rendimiento de biodiesel, mientras que el aumento de catalizador impide su producción.

Palabras clave: Aceite de cocina usado, Biodiesel, Transesterificación

Recibido: 20 de agosto de 2019. Aceptado: 1 de Octubre de 2019

#### **ABSTRACT**

Waste cooking oil transesterification was studied in order to analyze the parameters of biodiesel production by varying the alcohol-oil molar ratio, temperature and quantity of catalyst. The reaction was carried out for 90 minutes, using waste cooking oil, methanol and potassium hydroxide (KOH) as catalyst. The results showed that the highest production of biodiesel was carried out at reaction conditions of 60 °C, 1: 6 oil-alcohol ratio and 1% KOH. The density obtained is within the standards of the ASTM standard. Similarly, it was evidenced that the increase in the amount of alcohol and temperature favors greater biodiesel yield, while the increase in catalyst prevents its production.

Keywords: Waste cooking oil, Biodiesel, Transesterification

Received: August 20th, 2019 Accepted: October 1st, 2019



### 1. INTRODUCCIÓN

El biodiesel es un biocombustible que se produce a partir del proceso de transesterificación en el cual se puede utilizar diferentes aceites vegetales, grasas animales y aceite de fritura [1], sometiéndose a reacción con alcohol, el cual puede ser etanol o metanol y un catalizador, siendo los más utilizados el hidróxido de sodio y el hidróxido de potasio (Ver Fig. 1.) [2].

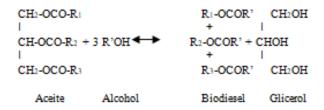



Fig.1. Reacción de transesterificación [2]

En la actualidad se cuenta con una gran variedad de materias primas con las cuales se puede llevar a cabo la producción de Biodiesel [3], como lo son aceites vegetales comestibles v no comestibles. aceites de micro algas, grasas animales y aceite de fritura [4] y su selección depende directamente de su costo y escala de producción [4], [5]. En el caso del Aceite de cocina usado, es sin duda, una alternativa muy importante, ya que es muy económica y abundante; además, contribuye significativamente con el medio ambiente, pues se le da uso a un residuo contaminante y contaminante [6]. Al generar biodiesel a partir de aceite de cocina usado y aplicarlos en la industria automotriz, se pueden obtener resultados positivos en las emisiones atmosféricas y desempeño del motor (Variación de la presión de los invectores) [6].

El aceite de cocina usado se genera a partir de la fritura de alimentos. A altas temperaturas, su composición cambia junto con las propiedades organolépticas que afectan la calidad de los alimentos y del aceite. La reutilización del aceite puede ser dañina porque durante el reciclaje se producen compuestos peligrosos que degradan la calidad del aceite y los alimentos [7]. Hasta ahora, el proceso catalizado por álcali es una técnica viable para convertir el aceite usado en biodiesel como una alternativa para los problemas actuales de contaminación ambiental [8]–[11].

El rendimiento de la producción de biodiesel depende de diversos factores, como lo son la temperatura, la cantidad de catalizador y la relación aceite-alcohol. En el primer caso, la temperatura, se ha reportado que al aumentarla acelera la reacción, se logra un mayor rendimiento, reduce la viscosidad, y favorece la separación rápida de la mezcla biodiesel-glicerol del biodiesel, y también que, un aumento de temperatura da como resultado un descenso en el rendimiento del biodiesel [12]. Por otro lado, es necesario catalizar la reacción con un grupo orgánico en presencia de catalizadores homogéneos, tales como hidróxidos de sodio, potasio, carbonatos y alcóxidos, y heterogéneos, los cuales intervienen directa o indirectamente en el rendimiento del producto final. El uso excesivo de catalizador forma emulsiones que reflejan una mayor viscosidad, lo que dificulta la recuperación del biodiesel, aunque cabe resaltar que la mejor cantidad de catalizador utilizado es aproximadamente el 1% en peso para el catalizador [2]. Para realizar la reacción de transesterificación es necesario mantener una relación molar de alcohol mayor para desplazar el equilibrio y aumentar el rendimiento; es decir, la proporción molar de alcohol-aceite varía entre 6:1 y 12:1 siendo 10:1 con la que se obtienen mejores resultados [12]. A partir de lo anterior, el siguiente estudio pretende determinar la influencia de la temperatura, cantidad de catalizador y relación molar aceite-alcohol en la densidad del biodiesel obtenido a partir de aceite de cocina usado.

## 2. MATERIALES Y MÉTODO

Materiales: El aceite de cocina usado fue obtenido de un restaurante gourmet en Bogotá DC, Colombia y fue filtrado para remover impurezas. Metanol *(CH3OH)* con 99,9% de pureza e Hidróxido de potasio *(KOH)* obtenidos



de la compañía Merck.

#### **Procedimiento:**

Transesterificación: La transesterificación se llevó a cabo en un matraz de fondo plano de 250 mL de volumen debidamente sellado con tapón y la temperatura se controló con termómetro Datalogger de 4 canales. La solución de metóxido de potasio se preparó a partir de la reacción de KOH en metanol, bajo agitación mecánica. Una vez obtenida la solución, se agrega a 50 g de aceite pretratado, y se mantuvo con agitación constante (350rpm) durante 90 min (Ver Fig. 2). Las condiciones de reacción, temperatura, cantidad de catalizador y relación alcohol aceite se variaron según los datos mostrados en la Tabla 1. Terminada la reacción, se procedió a la separación de los productos obtenidos (biodiesel y glicerol) a través del proceso de decantación por 20 horas (Ver Fig. 3a). El biodiesel se lavó 3 veces con agua destilada para retirar trazas de alcohol, catalizador y/o jabón, productos de la reacción (Ver Fig. 3b). Se prepararon 9 muestras de biodiesel.

| Variable           |    | Aceite:<br>Metanol | Tempera<br>tura (°C) | KOH<br>(%) | Tiempo<br>(min) |
|--------------------|----|--------------------|----------------------|------------|-----------------|
| Aceite:<br>Metanol | E1 | 1:3                | 60                   | 1          | 90              |
|                    | E2 | 1:4,5              | 60                   | 1          | 90              |
|                    | E3 | 1:6                | 60                   | 1          | 90              |
| Temperat<br>ura    | E4 | 1:6                | 50                   | 1          | 90              |
|                    | E5 | 1:6                | 55                   | 1          | 90              |
|                    | E6 | 1:6                | 60                   | 1          | 90              |
| %                  | E7 | 1:6                | 60                   | 0,5        | 90              |
| Catalizad          | E8 | 1:6                | 60                   | 1          | 90              |
| or                 | E9 | 1:6                | 60                   | 1,5        | 90              |

Tabla 1. Condiciones de reacción

**Densidad:** Haciendo uso de un picnómetro de 10mL se determinó la densidad de cada muestra de biodiesel obtenido a partir de la ecuación *1*.

$$d = \frac{m}{V}$$

Donde *m* y *V* corresponden a la masa y volumen, respectivamente, del biodiesel utilizado.

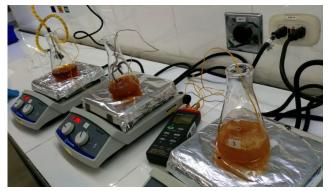



Fig.2. Reacción de transesterificación en laboratorio



Fig.3. a) Decantación del biodiesel y glicerol.



Fig.3.b) Lavado del biodiesel.

**Rendimiento de biodiesel:** Para calcular el rendimiento de biodiesel, se utilizó la ecuación 2

$$y = \frac{m_p}{m_s} \times 100$$

Donde *mp* es la masa de biodiesel producido y ms es la masa de la muestra de aceite de cocina usado utilizado en el experimento.

Para la reacción de transesterificación, se utilizó KOH como catalizador para convertir aceite de cocina usado en biodiesel, junto con metanol, y se variaron importantes parámetros en este proceso, como la temperatura, relación molar y cantidad de catalizador. Los experimentos fueron planteados



para determinar cómo estos parámetros afectan el rendimiento y la densidad de los ésteres.

Efecto de la relación molar aceite-alcohol

La cantidad de metanol es uno de los parámetros más importantes que influye en la formación de ésteres [13] [14]. El efecto de la relación alcoholaceite se estudió en el rango 1:3 a 1:6 y los resultados se muestran en la Fig. 4. La conversión a ésteres metílicos de ácidos grasos (FAME) fue favorecida con el aumento en la concentración de metanol, obteniendo mayor rendimiento (92,6%) a una relación molar 1:6.

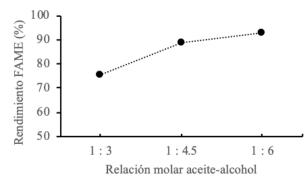



Fig.4. Rendimiento producción de biodiesel con respecto a la relación molar aceite-alcohol

La reacción de transesterificación es reversible por lo que requiere una alta cantidad de alcohol para favorecer la reacción hacia la formación de ésteres alquílicos de ácidos grasos [15]; se ha observado que al incrementar la relación molar de alcohol-aceite, el rendimiento de biodiesel también incrementa, pero comienza a disminuir después de alcanzar el pico [16], situación que no se evidenció en este estudio, debido a que la relación molar no fue tan alta para favorecer la disminución en el rendimiento de biodiesel, como en el trabajo de Majid et al, en el que demostraron que la relación aceite-alcohol óptima fue 1:9.4 [17].

#### Efecto de la temperatura

Dependiendo de las propiedades del aceite, la transesterificación puede ocurrir a diferentes temperaturas, ya sea a temperatura ambiente [13], o a temperatura cerca al punto de ebullición del

metanol [18], [19]. El efecto de la temperatura en la producción de biodiesel se estudió en el rango de 50°C a 60°C, evidenciándose que éste aumento favorece mayor producción de FAME (de 71% a 96%) (Ver Fig.5), así como se ha reportado en la literatura [20], debido a que el aumento de la temperatura acelera la reacción y se logra un mayor rendimiento, probablemente a la reducción de la viscosidad del aceite al aumentar la temperatura, lo que resulta en una mejor mezcla del aceite con alcohol y una separación más rápida del glicerol del biodiesel [12].

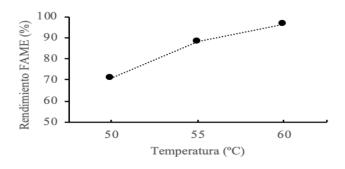



Fig. 5. Rendimiento producción de biodiesel con respecto a la temperatura

#### Efecto de la cantidad de catalizador

La concentración de KOH se varió en el rango de 0.5% a 1.5% en peso para determinar el efecto de la cantidad de catalizador en el rendimiento de producción de FAME. En la Fig.6 se puede observar que aunque no hay una relación directa, al incrementar cantidad de KOH de 0.5% a 1%, el rendimiento de biodiesel disminuyó (de 90.6% a 69.8%), y posteriormente, aumentó a 75% con el aumento de KOH a 1.5%; sin embargo, sigue siendo mucho más bajo con respecto a la prueba con la menor cantidad de catalizador. Se ha reportado que a mayor cantidad de catalizador también favorece la formación de jabón en la mezcla de reacción, lo cual puede disminuir el rendimiento de FAME [21], así como también forma emulsiones que reflejan una mayor viscosidad, lo que dificulta a recuperación de biodiesel [15][22]. Los resultados de este trabajo



se acercan a lo indicado en el trabajo de Felizardo et al. [18] y Phan et al. [7].



Fig.6. Rendimiento producción de biodiesel con respecto a la concentración de KOH

#### Densidad del biodiesel

La densidad del biodiesel es importante, sobre todo en sistemas de combustión sin aire, porque influye en la eficiencia de atomización del combustible [23], y afecta significativamente su desempeño en el motor [24]. Para las muestras preparadas, se encontró que la densidad se encuentra entre 0.87g/mL y 0.93g/mL (ver tabla 2), rango que concuerda con lo establecido en la norma ASTM [18]. Sin embargo, no hay una relación directa con ninguno de los parámetros del proceso estudiados.

| Aceite:<br>Metanol | Temp.<br>(°C) | KOH<br>(%) | Tiempo<br>(min) | Densidad<br>(g/mL) |
|--------------------|---------------|------------|-----------------|--------------------|
| 1:3                | 60            | 1          | 90              | 0.92               |
| 1:4.5              | 60            | 1          | 90              | 0.88               |
| 1:6                | 60            | 1          | 90              | 0.91               |
| 1:6                | 50            | 1          | 90              | 0.91               |
| 1:6                | 55            | 1          | 90              | 0.93               |
| 1:6                | 60            | 1          | 90              | 0.87               |
| 1:6                | 60            | 0.5        | 90              | 0.92               |
| 1:6                | 60            | 1.0        | 90              | 0.93               |
| 1:6                | 60            | 1.5        | 90              | 0.87               |

Tabla 2. Densidad del biodiesel obtenido a partir de aceite de cocina usado a diferentes condiciones de reacción

### 4. CONCLUSIONES

La mayor producción de biodiesel (96%) a partir de aceite de cocina usado fue obtenido a una relación molar alcohol-aceite 6:1, durante 90 minutos a una temperatura de 60°C con la presencia 1% de KOH. El incremento en la cantidad de catalizador, no contribuye al aumento en el rendimiento de ésteres metílicos de ácidos grasos, mientras que la temperatura y la relación alcohol-aceite favorece la producción de biodiesel. La producción de biodiesel a partir de aceite de cocina usado es otra posibilidad para producir combustibles alternativos económicos, los cuales podrían reducir la contaminación y proteger al medio ambiente.

#### 5. AGRADECIMIENTOS

A los estudiantes de Seminario de Profundización del período 2019-1 Vacacional de la Universidad ECCI por su colaboración en la recolección de datos experimentales, y la Universidad ECCI por facilitar las instalaciones para el desarrollo de la investigación.

# 6. REFERENCIAS BIBLIOGRÁFICAS

- [1] INSTITUTO INTERAMERICANO DE COOPERACIÓN PARA LA AGRICULTURA, Atlas de la agroenergía y los biocombustibles en las Américas II Biodiésel. 2010.
- [2] G. C. Castellar Ortega, E. R. Angulo Mercado, and B. M. Cardozo Arrieta, "Transesterificación de aceites vegetales empleando catalizadores heterogéneos," Prospectiva, vol. 12, no. 2, pp. 90–104, Nov. 2014.
- [3] E. M. Shahid and Y. Jamal, "Production of biodiesel: A technical review," Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4732–4745, 2011.
- [4] S. P. Singh and D. Singh, "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 200–216, 2010.
- [5] M. Kumar and M. P. Sharma, "Assessment of potential of oils for biodiesel production," Renew.



- Sustain. Energy Rev., vol. 44, pp. 814–823, 2015.
- [6] R. A. ALARCÓN RODRÍGUEZ, "OBTENCIÓN DE BIODIÉSEL A PARTIR DE MEZCLAS DE ACEITE USADO DE COCINA Y ACEITE DE PALMA," Universidad Santo Tomás, 2014.
- [7] P. T. M. Phan Anh N., "Biodiesel production from waste cooking oil," Egyptian Journal of Chemistry, vol. 55, no. 5. pp. 437–452, 2012.
- [8] T. Hiwot, "Determination of oil and biodiesel content", physicochemical properties of the oil extracted from avocado seed (Persea Americana) grown in Wonago and Dilla (gedeo zone), southern Ethiopia," Int. Sci. Organ., vol. 3, no. 3, pp. 311–319, 2017.
- [9] S. Jafarinejad, "Activated sludge combined with powdered activated carbon (PACT process) for the petroleum industry wastewater treatment: A review," Chem. Int., vol. 3, no. 4, pp. 268–277, 2017.
- [10] S. Jafarinejad, "Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment," Chem. Int., vol. 3, no. 3, pp. 342–350, 2017.
- [11] K. Legrouri, E. Khouya, H. Hannache, M. El Hartti, M. Ezzine, and R. Naslain, "Activated carbon from molasses efficiency for Cr (VI), Pb (II) and Cu (II) adsorption: A mechanistic study," Chem. Int., vol. 3, no. 3, pp. 301–310, 2017.
- [12] P. Verma and M. P. Sharma, "Review of process parameters for biodiesel production from different feedstocks," Renew. Sustain. Energy Rev., vol. 62, pp. 1063–1071, 2016.
- [13] A. V. Tomasevic and S. S. Siler-Marinkovic, "Methanolysis of used frying oil," Fuel Process. Technol., vol. 81, no. 1, pp. 1–6, 2003.
- [14] W. N. N. Wan Omar, N. Nordin, M. Mohamed, and N. A. S. Amin, "A two-step biodiesel production from waste cooking oil: Optimization of pre-treatment step," J. Appl. Sci., vol. 9, no. 17, pp. 3098–3103, 2009.
- [15] P. Nautiyal, K. A. Subramanian, and M. G. Dastidar, "Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process," Fuel, vol. 135, pp. 228–234, 2014.
- [16] S. N. Meher, L.C. Vidya Sagar, D. Naik, "Technical aspects of biodiesel production by transesterification A review," Renew. Sustain. Energy Rev., vol. 10, no. 3,

- pp. 248–268, 2006.
- [17] A. Majid, M, Aghel, B. Maleki, M. Ansari, "Producción de biodiesel a partir de aceite de cocina de desecho utilizando un catalizador homogéneo: estudio de piloto semi-industrial de microrreactor,» energia renovables, vol. 136, pp. 677-685, 2019.," Energías Renov., vol. 136, pp. 677-685, 2019.
- [18] P. Felizardo et al., "Production of biodiesel from waste frying oils," Waste Management, vol. 26. pp. 487–494, 2006.
- [19] Y. Wang, S. O. Pengzhan Liu, and Z. Zhang, "Preparation of biodiesel from waste cooking oil via two-step catalyzed process," Energy Convers. Manag., vol. 48, no. 1, pp. 184–188, Jan. 2007.
- [20] B. Freedman, E. H. Pryde, and M. T. L., "Variables affecting the yield of fatty esters from Transesterification vegetable oils," J. Am. Oil Chem. Soc., vol. 10, no. 61, pp. 1638–1643, 1984.
- [21] M. W. Azeem, M. A. Hanif, J. N. Al-Sabahi, A. A. Khan, S. Naz, and A. Ijaz, "Production of biodiesel from low priced, renewable and abundant date seed oil," Renew. Energy, vol. 86, pp. 124–132, 2016.
- [22] U. Rashid and F. Anwar, "Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil," Fuel, vol. 87, no. 3, pp. 265–273, 2008.
- [23] T. J. Callahan, T. W. Ryan, and L. G. Dodge, "The effects of vegetable oil properties on injection and combustion in two different diesel engines," J. Am. Oil Chem. Soc., vol. 61, no. 10, pp. 1610–1619, 1984. [24] A. Chhetri, K. Watts, and M. Islam, "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, vol. 1, no. 1, pp. 3–18, 2008.