
 DOI: http://dx.doi.org/10.18180/tecciencia.2016.20.10

*Corresponding Author.

E-mail: anfeledi@hotmail.com
How to cite: Orejuela, J.; León, A.; Suarez A., Non-traditional flow

shop scheduling using CPS, TECCIENCIA, Vol. 11 No. 20, 71-79,

2016, DOI: http://dx.doi.org/10.18180/tecciencia.2016.20.10

Non-Traditional Flow Shop Scheduling Using CSP

Scheduling Flow Shop No Tradicional Empleando CSP

Juan Pablo Orejuela1, Andrés Felipe León Díaz1*, Alexander Suarez Riascos1

1Universidad del Valle, Cali, Colombia

Received: 09 Sep 2015 Accepted: 05 Feb 2016 Available Online: 29 Feb 2016

Abstract

This paper addresses the problem of scheduling in a flow shop manufacturing environment with non-traditional requirements,

where some jobs must be scheduled earlier and others later depending on the priority established by the demand characteristics

supplied. The problem is formulated mathematically, and given its nonlinearity, we propose a CSP (Constraint Satisfaction

Problem) model, which is formulated using constraint programming with the software OPL Studio®. A set of experiments

was performed by varying the weighting of jobs. We also varied the deadlines and waiting times among the machines. Finally,

different production schedules were attained according to the type of experiment, thus solving the problem of non-traditional

scheduling.

Keywords: Scheduling, Operations Programming, Flow-shop Manufacturing Environment, Constraint Programming.

Resumen

En este documento se aborda el problema del Scheduling en un ambiente de fabricación Flow-Shop con requerimientos no

tradicionales, en el cual algunos trabajos deben ser programados en su momento más temprano y otros en su momento más

tardío dependiendo de la prioridad establecida por las características de la demanda a suplir. El problema es formulado

matemáticamente y dada su no linealidad se propone un modelo CSP (Constraint Satisfaction Problem) para su solución, el

cual se formula mediante programación por restricciones utilizando el software OPL studio®. Se realizaron un conjunto de

experimentos, variando la ponderación de los trabajos, así mismo se variaron la fecha de terminación y los tiempos de espera

entre máquinas. Finalmente, se obtuvieron diferentes programas de producción acorde al tipo de experimento dando una

solución al problema del Scheduling no tradicional.

Palabras clave: Programación De Operaciones, Scheduling, Ambiente De Fabricación Flowshop, Programación Por

Restricciones

http://dx.doi.org/10.18180/tecciencia.2016.20.10
mailto:anfeledi@hotmail.com

72

1. Introduction

Scheduling seeks to assign sequence and schedule

production orders. This problem is combinatorial, and its

domain grows exponentially as a function of the variables,

which makes the problem highly complex (NP-Hard).

According to [1] there are two types of techniques to

scheduling: approximation methods and optimization

methods.

Approximation methods: These are divided into four

categories a) priority dispatch rules, b) bottleneck-based

heuristics, c) local search methods, and d) artificial

intelligence [1]. Among the latter we find constraint

programming, which can also be divided into two branches:

constraint satisfaction and constraint solving. Constraint

satisfaction deals with finite domains, while constraint

solving is focused on infinite domain or more complex

domain problems [2].

Optimization techniques: An optimal solution is built from

the problem data by following a set of rules that precisely

determine the processing order [3]. Some scheduling

problems are solved effectively by these techniques.

However, its algorithms can become computationally too

complex, which makes approximation techniques an

interesting strategy.

One of the most useful approximation techniques currently

used to solve scheduling problems is Constraint

Programming (CP), which uses constraint satisfaction to

explore the search space and to obtain a solution, eliminating

from the sets of variables all those values that cannot be part

of a solution to the problem. Following we present some

research regarding the use of this technique in the scheduling

problem and other similar problems.

In [4], a combination of three models of mixed integer

programming is compared to the CP model in order to solve

a real assembly scheduling problem with constraints on

inventory and a set of machines. Here, the objective is to

minimize the weighted delay of all orders. Constraints

guarantee the release and completion dates of the activities

and the delay of each order, as well as machine capacity,

which can only process a single unit in a certain time.

Moreover, [5] deals with the Quay Crane Scheduling

Problem (QCSP), which consists of programming quay

cranes for unloading tasks on a ship. A CP model is

proposed, with constraints on time, space and the use of

cranes. The objective function seeks to minimize the

makespan.

Furthermore, [6] presents a solution to a problem of

production and distribution of newspapers. The authors

propose a CP model for a routing problem with time

windows and zoning constraints. It has a sequence in

production and a sequence in distribution, where the latter

depends on the first. They are subjected to capacity and

availability constraints on cargo trucks, limitations on

coverage distance for the trucks, and time windows for

deliveries. The aim is to minimize the distance covered by

the trucks, solving the constraints of the problem.

In [7] we find a model to solve a scheduling problem with a

determined number of jobs to be processed on a machine,

subject to the deterministic availability of the machine. All

jobs must be processed on a single machine and the goal is

to minimize the flow time of all jobs, according to the

availability constraints of the machine. We find more

research on CP models, with scheduling solutions to

problems in different environments [8] [9] [10] [11] [12]

[13] [14] [15] [16] [17] [18].

The proposal presented in this paper seeks to address a Non-

Traditional Scheduling problem using the paradigm of

Constraint Programming (CP). The problem is thus

presented in Section 2. In Section 3, a mathematical

modeling strategy is presented, which shows the complexity

and nonlinearity of the problem. In Sections 4 and 5 solution

methodology is presented, and in Sections 6 and 7 we

present the case study, the results, and finally, in Section 8,

our conclusions.

2. Materials and Methods

2.1. The Problem: Scheduling with non-traditional

requirements.

The scheduling problem is defined as the allocation and

sequencing of a set of jobs J, in a resource set M, where each

job comprises a series of operations O which use the

resource set M. There is also a set of constraints R, which

are associated with the resources and activities. When

scheduling is performed, the product obtained is the dates

when each of the operations of the job will be performed,

also known as a schedule. In Flow Shop Scheduling the goal

is to obtain a job sequence by optimizing a defined criterion

(usually the makespan) in a fixed order through the

machines.

The scheduling problem has been extensively studied in the

literature, since it is complex and it is common in multiple

industries and environments. Various researchers have

addressed the issue from different perspectives and in

different environments, where every feature of the

environment creates new requirements and challenges [4],

[19] [20] [21] [22].

2.1.1 Non-Traditional Scheduling

73

This paper presents a problem involving scheduling the

manufacturing of a set of jobs over a time period i, to meet

the demand for a time period j. The priority in the

manufacturing sequence depends on the period in which the

order is used to meet the demand. Production orders made to

meet the demand from an earlier and/or current period are

always programmed as early as possible. Moreover,

production orders made to meet the demands of a future

period should be scheduled as late as possible. Hence, what

makes this a Non-Traditional Scheduling problem is the

need to schedule some work or production orders as early as

possible and others as late as possible. For this specific

problem, the following variables are assumed to be known:

some production orders of work k, to be manufactured in I,

to meet the demand in j; OPKij.

The goal is for the jobs for immediate consumption (II) and

pending jobs (I) to be manufactured as early as possible,

since they must be delivered as soon as they are finished.

This suggests that the role is to minimize the inventory of

the product in process, which is equivalent to reducing the

time of total flow. For priority jobs (III), the goal is to

process them as late as possible so they do not remain long

as a finished product. This is equivalent to minimizing the

inventory of finished goods at the end of the line.

This situation is problematic because in failing to consider

non-traditional requirements, orders meeting future demand

would be manufactured too early, thus generating a cost for

maintaining inventory, and, as a worst case scenario, it

would cause a blockage on production due to a lack of

storage space for finished products. Indeed, in [21] we find

that the author presents a two-phase scheduling model. The

first phase is for priority jobs I and II, where the goal is to

process them as soon as possible, and the other is for priority

jobs III, were the goal is to process them as late as possible.

The author then attempts to solve this problem in one step,

applying a single scheduling which has no traditional

requirements, using CSP.

2.2 Initial Proposal: Linear-Programming Model

This paper uses the proposal in [23] as a starting point. For

the case presented here, a variant was included which

consisted in calculating the Total Flow Time (TFT) in terms

of position k of the sequence s and multiply it by a PWk

variable, which corresponds to the weight of a job in terms

of its position k and sequence s.

2.2.1 Linear programming Model

Parameters

Jobs (j): operations to be performed on machines.

Machines (q): resources for processing jobs. You can only

process one job at a time.

Variables

Xj,k: Binary variable that takes the value "1" when the job j

is assigned to a position k of a sequence.

iiKi,k: time the machine i remains idle, which occurs from

after finishing job processing at position k until starting to

process the job in position k + 1.

Wi,k: time waiting for a job at position k, which occurs from

the moment it stops being processed on machine i, until it

begins to be processed on machine i + 1.

Ck: completion of the last operation of job k.

2.2.2 Constraints

 ∑ 𝑋𝑗𝑘𝑗∈𝐽𝑂𝐵𝑆 = 1 ; ∀ 𝑘 (1)

 ∑ 𝑋𝑗𝑘𝑘∈{1…𝑁𝐵𝐽𝑂𝐵𝑆} = 1 ; ∀ 𝑗 (2)

𝑖𝑖𝑘𝑗𝑘 + [∑ 𝑋𝑗,(𝑘∓1)

𝑗∈{1…𝑁𝐵𝐽𝑂𝐵𝑆}

∗ 𝑇𝐼𝑀𝐸𝑖𝑗] + 𝑤𝑖𝑘1(𝑘∓1) =

 (3)

𝑤𝑖𝑘𝑖,𝑘 + [∑ 𝑋𝑗𝑘𝑗𝑘

𝑗∈{1…𝑁𝐵𝐽𝑂𝐵𝑆}

∗ 𝑇𝐼𝑀𝐸(𝑖+1),𝑗] + 𝑖𝑖𝑘(𝑖+1),𝑗 ; ∀ 𝑘

∈ {1, … 𝑁𝐵𝐽𝑂𝐵𝑆 − 1}; ∀ 𝑖 ∈ {1, … 𝑀 − 1}

 𝑤𝑖1 = 0 ; ∀ 𝑖 (4)

 𝑖𝑖𝑘1𝑘 = 0 ; ∀ 𝑘 (5)

 𝑐𝑘 = ∑ ∑ 𝑥𝑗𝑘𝑗,1

𝑗∈𝐽𝑂𝐵𝑆𝑖∈𝑀𝐴𝐶𝐻𝐼𝑁𝐸𝑆

∗ 𝑇𝐼𝑀𝐸𝑖,𝑗 (6)

+ ∑ [𝑖𝑖𝑘𝑀,𝑘

𝑘=(1…(𝑠−1)

+ ∑ 𝑥𝑗𝑘𝑗,(𝑘∓1)𝑇𝐼𝑀𝐸𝑀,𝑗

𝑗∈𝐽𝑂𝐵𝑆

] ; ∀ 𝑘

∈ {1, … 𝑁𝐵𝐽𝑂𝐵𝑆 − 1}

Where (1) and (2) ensure a single job per sequence and vice

versa. Equation (3) ensures the functionality of the

sequences, while (4) and (5) ensure that the first job on a

machine does not wait and that the first machine does not

wait. Equation (6) shows the date of completion of each job.

74

Since this problem requires managing the jobs by priority

according to the features explained in the definition of the

scheduling problem, Priority I and II jobs need to be

scheduled as early as possible, and Priority III jobs as late as

possible. For this purpose, the PWk variable was included in

the objective function to represent the importance of jobs in

position k of the sequence.

𝑷𝑾𝒌 = ∑ 𝑿𝒋,𝒌 ∗

𝒏

𝒋=𝟏

𝑷𝒋 ∀ 𝒌

2.2.3 Objective Function: Total Weighted Flow Time

𝑇𝐹𝑇𝑃 = ∑ 𝐶𝑘 ∗

𝑛

𝑘=1

𝑃𝑊𝑘 = ∑ 𝐶𝑘 ∗

𝑛

𝑘=1

 ∑ 𝑋𝑗,𝑘 ∗

𝑛

𝑗=1

𝑃𝑗

In the objective function we observe its non-linearity, which

renders difficult the use of integer linear programming

techniques. Thus, to solve the problem, we have chosen the

methodology CP, which uses elements of constraint

satisfaction such as closure and constraint propagation to

reach a solution.

2.3 Constraint Programming (CP)

The main idea of CP (Constraint Programming) is to use the

knowledge of constraints to remove from the domain of

variables the values that cannot be part of a solution. In this

way, it is possible to solve a problem by reducing the

domains of its variables until achieving very close

approximations to the solution value [4]. A CSP (Constraint

Satisfaction Problem) is a finite set of variables, each of

which has a value domain, and there is a set of constraints

that limit the combination of values that the variables can

take [24].

A CSP can be represented as a triplet (X, D, C), where:

X = {X1, X2, X3,…Xn}: a set of n variables.

D = {D1, D2,….Dn}: set of finite domains, where Di is the

domain of Xi.

C = {C1, C2,….Cn}: finite set of constraints, where each

constraint k-aria Ci constrains the values that the k-variable

can take simultaneously. One particular case is the binary

restriction, which relates only 2 variables, Xi and Xj and is

known as Cij.

For the scheduling problem, instantiation is identified. This

means the variable-value relationship that represents the

assignment of value a to the variable X (X = a). So the

instantiation of a set of variables is a tuple of ordered pairs,

where each pair (Xi,ai) assigns a value {aiЄDi} to the variable

Xi. A tuple ((X1,a1),(X2,a2),.....,(Xi,ai) is locally consistent if

it satisfies the constraints formed by the variables {X1,

X2,...,Xi} of the tuple; to simplify the notation of the

instantiation of a set of variables, the tuple ((X1,a1),….,(Xi,

ai)) is replaced by (a1,…, ai).

A solution of a CSP is an assignment (a1, a2,...an) of values

to variables, so that the constraints are satisfied. In other

words, a solution is a consistent tuple containing all the

variables of the problem, and a partial solution is a consistent

tuple containing some of the variables of the problem. It is

said that a CSP is consistent if it has at least one solution,

meaning that it at least has a consistent tuple. Originally

constraint satisfaction was applied only to find workable

solutions. However, when constraint satisfaction is included

in a more elaborate structure, it can also be applied to

optimization problems, as shown: [25]

Minimize Xi(X1…,Xn) ; Subject to:

𝑓𝑖(𝑋1…,𝑋𝑛)

𝑓𝑖(𝑋1…,𝑋𝑛) = 1; 𝑖 = 1, . . . , 𝑚

𝑋𝑗 ∈ 𝐷𝑗 ; 𝑖 = 1, . . . , 𝑚

Some of the applications where CSP is used to solve

scheduling problems [26] [27] [28] [29] [30].

2.4 Model: Solution proposal

2.4.1 Sets

Jobs [j]: operations to be performed on each machine.

Machines [q]: resources for processing jobs (one job at a

time).

2.4.2 Parameters:

Duration[j,o]: time that a resource takes to process an

activity.

Operations[j,o]: set of activities that make up a job.

Weight[wj]: value assigned to jobs in function of the degree

of importance among them.

Ready time[rj]: release date of job j.

Deadline[dj]: time in which the job j must be completed.

tmp: maximum time that a mixture can be in process.

2.4.3 Variables:

Start (sj,o): date on which the job j or operation starts.

End (ej,o): date on which the job j or operation ends

Total weighted flow time (TWFT): the summation of the

subtraction of the termination date, minus the ready time of

each job multiplied by their respective weight.

2.4.4 Objective Function

Minimize:

75

;

∀ 𝑗

Where M is the machine where the last operation of all jobs

is run.

2.4.5 Constraints

Precedence Constraint:

𝑒𝑗,𝑜 ≤ 𝑆𝑗,𝑜+1 ; ∀
j

Job release constraint

𝑆𝑗,1 ≥ 𝑟𝑗 ; ∀
j

Delivery of jobs constraint:

𝑒𝑗,𝑜 ≤ 𝑑𝑗 ; ∀
j

Machine capacity constraints:

𝑀𝑎𝑥 (𝑒𝑗,𝑖) ≤ 𝑐𝑎𝑝𝑖 ; ∀
j

Maximum time of product in process constraint:

(𝑒𝑗,3−= 𝑆𝑗,1) ≤ 𝑡𝑚𝑝𝑗 ; ∀
j

2.5 Case Study – Animal Feed Industry

Our research focused on the scheduling phase, developed at

the lower level of the hierarchy proposed in [21]. There are

3 machines operating 8 hours a day, 6 days a week and the

manufacturing environment is a flowshop without storage

between machines. Five weeks were scheduled (240 hours

to schedule jobs).

2.5.1 Nature of the Products

The product was feed concentrate for chickens, laying hens

and pigs. They are classified into two categories: Priority I

and II (products manufactured to meet demands of past and

current periods), and Priority III, which are products

manufactured to be delivered at a later period. Every

operation of every job is performed on a single machine and

has a known duration. The parameter "weighting" was

created, representing the priority of a job in terms of the

period of its demand.

The weighting of a job is multiplied in the objective function

by the time flow. Because the objective function is

minimization, the model tends to always schedule the

processing of jobs with higher positive weights (Priority I

and II jobs) at earlier dates and the processing of jobs with

negative weights (priority II jobs) at later dates.

2.5.2 Company’s scheduling problem

Table 1 shows product quantities for the periods of demand

j and production periods i, which determines the deadline

and ready time of the jobs.

Table 1 Master Plan: Weekly demand for the products.

Given in arrobas (a unit of weight used in Spanish-speaking

countries equaling approximately 25 lbs)

 PERIOD

 j=1 j=2 j=3 j=4 j=5

XChicken

i=1 20

i=2 29 32

i=3 18 25

i=4 30

XHen

i=1 40

i=2 50 44

i=3 76

i=4 35

XPig

i=1 11

i=2 45

i=3 25

i=4 34

A job with a ready time of 0 is not always priority I. It is

possible that a job is released on the zero date to supply a

future demand and that it has a negative weight. Jobs with a

ready time different than zero also may not be classified

immediately as priority II, because it is possible for a job to

be released on a date greater than zero and to be priority I;

in other words, to have a high weighting and be processed at

early dates.

For jobs with demand in the same period we establish a

priority according to the importance of the product. For

example, in Table 2, for the case of three previous periods

the weighting for Hen is 20. Since Chicken is more

important, its weight is 1 value higher to denote such

importance. Pig is less important, and thus is set as 1 value

lower.

Table 2 Weights according to demand period
 WEIGHT

 Chicken Laying hen Pig

For three previous periods 21 20 19

For two previous periods 16 15 14

For one previous period 11 10 9

For the current period 6 5 4

For one later period -4 -5 -6

For two later periods -9 -10 -11

For three later periods -14 -15 -16

For four later periods -19 -20 -21

j

n

WreTFTP jMj

j

*][,

1







76

Figure 1 Graphic of Operations OPL Case 1

Table 3 Attributes of jobs (number of hours) utilized in the implementation of the proposed model:

Product Weight Ready time Deadline Job Mill Batcher Mixer

Hen -15 96 240 1 3 1 5

Chicken -4 144 192 2 3 1 3

Chicken 11 48 96 3 3 1 3

Pig 4 96 144 4 3 2 2

Pig 4 48 192 5 5 3 3

Hen -5 144 192 6 2 1 4

Hen -5 144 240 7 2 1 4

Chicken -6 96 240 8 3 1 3

Hen 5 48 96 9 3 1 5

Chicken 5 96 144 10 2 1 2

Pig -16 0 48 11 2 1 1

Chicken 4 48 144 12 3 2 3

Chicken 6 0 144 13 2 1 2

Hen -5 144 240 14 4 2 8

Pig -6 144 240 15 4 2 3

3. Results

Five experiments were performed. In the first, all jobs had

positive weights. In the second, all jobs had negative

weights. In the third, there were 8 jobs with positive

weighting, and gradually the number of jobs with negative

priority increased. In the fourth, the parameter tmp was not

used; this means that once jobs began, the process could

finish at any point. The fifth was called "no wait", because

once it starts processing, the job could not wait to be

processed in a machine.

3.1 Case 1

The model was run for one week (48 hours) with 8 jobs of

positive weight (see Table 4), meaning that only demand

from past periods (missing) and the current period are met.

This case represents traditional scheduling.

Table 4 Weights of jobs for Case 1

Jobs T1 T2 T3 T4 T5 T6 T7

Weight 10 5 10 10 5 10 5

77

Figure 2 OPL Operations graphic for run #4

Operations were processed as soon as possible. The time

flow of the job and the inventory of the product in process

were minimized (see Figure 1).

The last operation ends at u = 41 and not at the capacity limit

u = 48. Machine 1 did not show idle time, while the other 2

machines did, because they had to wait for the operation that

preceded them. Jobs did not have wait times on any of the 3

machines. To minimize the TWFT, the model tried to make

the Cj as small as possible, so that jobs are processed as soon

as possible.

3.2 Case 2

The model was run for a week (48 hours), with 8 jobs of

negative weight (see Table 5), meaning that only future

periods are demands met. All jobs are intended to be

processed at the latest possible date.

Table 5 Weights of jobs for Case 2

Jobs T1 T2 T3 T4 T5 T6 T7 T8

Weight -10 -5 -10 -10 -5 -10 -5 -5

The operations are processed as late as possible, with no

operation scheduled at time zero. The goal is to minimize the

inventory of finished products in the line. Jobs with higher

weight – among the negative weights—were scheduled first.

Machine 3 had no idle time and it was busy until the

workshop closed.

To minimize this indicator, the model makes Cj as large as

possible, so that when multiplied by the negative weights,

the product gets smaller and smaller. This explains why

Priority II jobs are scheduled to be finished as late as

possible. Table 6 shows performance measures for Cases 1

and 2.

Table 6 Performance measures for Cases 1 and 2.

Performance Measure Case 1 Case 2

TWFT 1185 -2285

Makespan 41 48

Use of workshop 68.3% 58.3%

Ready time of first job 0 5

Cmin 6 21

TFT: ∑ (Ci – ri) 183 284

Initial delay: ∑ (Ci – di) -201 -100

3.3 Case 3

The model was run 9 times, for 8 jobs. In the first run they

all started with positive weighting and a ready time of zero.

For each run jobs with negative weight were increased by 1.

All jobs are of equal duration, so that it makes no difference

which job is assigned the negative weighting. Table 7 shows

the performance measures for the new runs.

78

Table 7 Performance Measures in the 9 experiments.
 Experiment #

 1 2 3 4 5 6 7 8 9

TWFT

870

180

-

165

-

765

-

1305

-

1560

-

2010

-

2205

-

2370

TFT 136 153 174 195 216 237 258 279 300

TOTAL

DELAY

∑(𝑐𝑖− 𝑑𝑖
)

-

238

-

231

-

210

-

189

-

168

-

147

-

126

-

105

-

84

In the first run (#1) we find a traditional scheduling (there

are only priority I jobs). Traditional performance measures

such as makespan are important to give us an idea of how

quickly the jobs flowed. In this case, the makespan = 27. On

the contrary, in run #9 all jobs were priority II, which means

they are processed as late as possible. In this case the time

of maximum total flow is equal to 300 and the smallest

overall advancement is 84, because the work flowed as

slowly as possible since the shop opened. For runs #2 to #8,

we found scheduling with non-traditional requirements.

There are Priority I and II jobs; the first will be processed at

the earliest date and the second ones at the latest date. The

operations graphic showing OPL for run #4 shows how the

proposed model achieves the proposed goal for this study

(Figure 2).

In the first 2 runs we found a positive TWFT, which

indicates that Priority I jobs had a higher weight on the

indicator than the Priority II jobs. From run #3, we found

that Priority II jobs had a higher weight than Priority I jobs,

leading the indicator to have negative values. As the number

of jobs with negative priority grows, the TWFT becomes

smaller and the number of jobs processed on the later date

increases. The TFT increases as the number of jobs with

negative priority increases (see Figure 3).

Figure 3 TFT for the 9 experiments. a. Total weighted flow

time per run and b. Total flow time per run.

When the delay has a negative value, there is an

improvement in the delivery date of a job. In the 9 runs there

was always advancement. This indicator grew with the

increase in priority II jobs, because they always end on later

dates, closer to their deadlines, causing the gap between Ci

and di to diminish with over the course of the runs (see figure

4).

Figure 4 Total delay for the 9 runs (experiments)

3.4 Case 4

The case study was run without the parameter tmp, freeing

the model up to schedule the activities of a job at any time,

meaning that once a job starts, the model can take the time

it needs to finish it.

The value of the objective function without tmp is TWFT =

-5191. It takes the same value as the case study with the tmp

parameter, indicating that eliminating this parameter does

not affect the TWFT, since this only depends on the Cj times

when the jobs finish and not in the moments when the other

operations are performed. The time finding a solution is

increased by 40% when the problem was solved without

including tmp. The tmp parameter is especially useful when

the products are perishable or when for some other reason

once processing starts not much time can be spent to

completion. The model with tmp presents a solution that

links up much more to the operations of one single job and

that cannot be performed in scattered moments in time. The

use of machines is different for each of the cases.

3.5 Case 5

 The tmp parameter was used, equating it to the sum of all

the operation processing times. In other words, the time

available between the beginning of the first operation of a

job and the end of the last operation was exactly equal to the

sum of the duration of its operations. Therefore, this

operation is called “no wait” because no waiting times are

allowed between job operations.

In the OPL operations graph, we can see how the Priority I

and II jobs are scheduled in their earlier and later dates

respectively without causing waits between work

operations. It ensured that the first job to be scheduled is job

13 and the last is job 1. This is because job 13 has a weight

79

of 11, the highest of all, as well as a ready time of 0, and job

1 has the lowest weight of all at -16 and a deadline of 240.

The dates for completing the jobs are maintained; what

varies are the moments at which operations 1 and 2 are

performed, generating a maximum clustering between the 3

operations of all jobs.

4. Conclusions

The problems of non-traditional scheduling, despite the

degree of complexity in the required information and high

costs (both economically and technologically), are no

strangers to the reality of a company, since demand may be

estimated for future periods and companies may defer the

manufacturing of a product to the latest possible moment.

Tmp is a parameter which controls the degree of dispersion

between activities. Hence, a large tmp allows large spans of

time between the end and start of operations of the same job,

while a small tmp makes operations of the same job closer

to each other. Therefore the smaller the tmp of a job is, the

less waiting time between the beginning of its first operation

and the end of its last operation.

Since the scheduling carried out in this paper has non-

traditional features, traditional performance measures, such

as makespan or shop utilization, provide little information

relevant for analysis. This is because when there are Priority

II jobs that are completed as late as possible, the makespan

will always have a value equal to the scheduling horizon,

which is set by the capacity of the machines and utilization

will always be the same, precisely because the Cmax does not

change either.

References

[1] A. Jain y S. Meeran. “A state-of-the-art review of job-shop scheduling
techniques”. Journal of heuristics, 1998.

[2] F. Barber y M. Salido. “Introduction to constraint programming”.

Inteligencia Artificial, Vol 7, 2003.
[3] M. Galpienso. “Un modelo de integración de técnicas de CLAUSURA

y CSP de restricciones temporales: Aplicación a problemas de Scheduling”.

Departamento de Ciencia de la Computación e Inteligencia Artificial,
Alicante, 2001.

[4] D. Terekhov, M.k. Dogru, U. Ozen, J.Beck. Solving two-machine

assembly scheduling problems with inventory constraints. Computers &
Industrial Engineering, 2012.

[5] O. Unsal, C. Oguz. Constraint programming approach to quay crane

Scheduling problem. Transportation Research Part E 59, 2013.
[6] R. Russell. A constraint programming approach to designing a

newspaper distribution system. Int. J. Production Economics 145, 2013.

[7] B. Detienne. A mixed integer linear programming approach to minimize
the number of late Jobs with and without machine. European Journal of

Operational Research, 2014.

[8] T. Lapègue, O. Bellenguez, D. Prot. A constraint-based approach for the
shift design personnel task scheduling problem with equity. Computers &

Operations Research 40, 2013.

[9] A. Malapert, C. Guéret, L. Martin. A constraint programming approach
for a batch processing problem with non-identical job sizes. European

Journal of Operational Research 221, 2012.
[10] F. Brandt, R. Bauer, M. Volker, A. Cardeneo. A constraint

programming based approach to a large-scale energy management problem

with varied constraints. Springer Science+Business Media, 2012.
[11] Y. Peng, D. Lu, Y. Chen. A Constraint Programming Method for

Advanced Planning and Scheduling System with Multilevel Structured

Products. Hindawi Publishing Corporation Discrete Dynamics in Nature
and Society, 2014.

[12] X. Wang, N. Policella, S. F. Smith, A. Oddi. Constraint-based methods

for scheduling discretionary services. AI Communications 24, 2001.
[13] M. Rostami, D. Moradinezhad, A. Soufipour. Improved and

Competitive Algorithms for Large Scale Multiple Resource-Constrained

Project-Scheduling Problems. KSCE Journal of Civil Engineering, 2014.
[14] K. Limtanyakul, U. Schwiegelshohn. Improvements of constraint

programming and hybrid methods for scheduling of tests on vehicle

prototypes. Springer Science+Business Media, LLC, 2012.
[15] J. Novas, G. Henning. Integrated scheduling of resource-constrained

flexible manufacturing systems using constraint programming. Expert

Systems with Applications 41, 2014.
[16] Q. Ma, Z. Duan. Linear time-dependent constraints programming with

MSVL. Springer Science+Business Media, LLC 2012.

[17] S. Liu, C. Jung Wang. Optimizing project selection and Scheduling
problems with time-dependent resource constraints. Department of

Construction Engineering, National Yunlin University of Science and

Technology, No. 123, 2011.
[18] Y. Tang, R. Liu, Q. Sun. Schedule control model for linear projects

based on linear scheduling method and constraint programming.

Automation in Construction, 2014.
[19] P. Bruker, B. Jurich, B. Sievers. A branch and bound algorithm for the

job-shop Scheduling problem. Universitiit Osnabriick, D-49069

Osnabriick. Germany, 1992.

[20] A. Ebadi, G. Moslehi. An optimal method for the preemptive job shop

scheduling problem. Department of Industrial and Systems Engineering

Isfahan University of Technology, 2013.
[21] J. Orejuela. “Desarrollo de un modelo jerárquico de planeación de la

producción en un flow shop, caso industria de concentrados”. Universidad

del Valle, Facultad de Ingeniería, 2008.
[22] D. Gupta, P. Singla, S. Bala. N x 2 Flow Shop Scheduling Model Using

Branch and Bound Technique, Set up Times are Separated from Processing

Times, With Job Block Criterion and Interval of Non Availability of
Machines. International Journal of Engineering and Innovative Technology

(IJEIT). Volume 3, Issue 1, 2013.

[23] M. Pinedo. “Scheduling Theory, Algorithms and Systems”. Springe
Science+Business Media, Inc. 2002.

[24] M. Arangú. Modelos y Técnicas de Consistencia en Problemas de

Satisfacción de Restricciones. Universidad Politécnica de Valencia, 2011.
[25] M. Pinedo. “Planning and Scheduling in manufacturing and services”.

Springer Science+Business Media, Inc, 2005.

[26] F. H'Midaa, P. Lopez. Multi-site scheduling under production and
transportation constraints. International Journal of Computer Integrated

Manufacturing. Volume 26, Issue 3, 2013
[27] M. Relich. Fuzzy Project Scheduling Using Constraint Programming.

Applied Computer Science. Volume 9, Issue 1, 2013

[28] P. Lorterapong, M. Ussavadilokrit. Construction Scheduling Using the
Constraint Satisfaction Problem Method. Journal of Construction

Engineering and Management. Volume 139, Issue 4, 2013.

[29] Y. Rao, D. Qi, J. Li. An Improved Hierarchical Genetic Algorithm for
Sheet Cutting Scheduling with Process Constraints. The Scientific World

Journal, Volume 2013, Article ID 202683.

[30] H. Bakker. An Introduction to the Nurse Rostering Problem.
Knowledge Representation and Reasoning Seminar Report, 2013.

