
DOI: http://dx.doi.org/10.18180/tecciencia.2016.21.7

*Corresponding Author.

E-mail: amolinam@ecci.edu.co 
How to cite: Molina, V., Cuadra, M. Martínez, L. J., Robles, H. V., 

Analysis through dynamic temporal sequence alignment in SpO2 

signals, TECCIENCIA, Vol. 12 No. 21., 39-43, 2016, DOI: 

http:/dx.doi.org/ 

Analysis through Dynamic Temporal Sequence Alignment in SpO2 

Signals 

Análisis en Señales SpO2 a través de Alineamiento Dinámico Temporal de Secuencia 

Valentín Molina1,2*, Manuel Cuadra1,2, Luis J. Martínez1,2, Horderlin V. Robles1,2,3 

1Ingeniería Biomédica, Universidad ECCI. Bogotá, Colombia. 
2GINIC-HUS, Hospital Universitario de la Samaritana. Bogotá, Colombia. 

3DEMA, Universidad del Sinú, Elías Bechara Zainúm, Montería, Córdoba, Colombia. 

Received: 28 Sept 2015  Accepted: 21 Jul 2016  Available Online: 19 Aug 2016 

Abstract 

In this paper a methodology for the alignment of waves in the photoplethysmography (PPG) register signal is shown. The 

procedure uses algorithms for dynamic programming and for optimization in order to generate a single segmentation of these 

waves in the PPG signal and the individual reconstruction of each wave. By aligning a pattern signal for the 

photoplethysmography, it is possible to make an individual segmentation of waves present in the PPG signal. Once the 

reconstruction of each individual wave is obtained, these data are indexed in an array, which enables easier temporary markers 

such as the individual location of each peak to the oxygen saturation (SpO2) signal analysis. 
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Resumen 

Este artículo muestra una metodología para el alineamiento de ondas en la señal de registro de fotopletismografía (PPG). El 

procedimiento usa algoritmos para programación dinámica y optimización para generar una única segmentación de estas 

ondas en la señal PPG y la reconstrucción individual de cada onda. Alineando una señal patrón para la fotopletismografía, es 

posible hacer una segmentación individual de las ondas presentes en la señal PPG. Una vez se obtiene la reconstrucción de 

cada onda individual, estos datos se indexan en un arreglo, lo que permite facilitar marcadores temporales como la ubicación 

individual de cada pico al análisis de señal de saturación de oxígeno (SpO2). 

Palabras clave: Programación dinámica, Alineamiento de secuencia, Fotopletismografía. 

1. Introduction

Digital PPG is a simple optical method that can be easily 

implemented and inexpensive. It is generally used to 

measure changes in blood volume through the emission and 

reception of light on the skin surface at peripheral sites of 

the body like fingers, toes, ears and forehead [1] [2]. 

The PPG signal obtained as a result of the application of this 

method can be affected by natural conditions, sensor 

location, skin conditions (humidity, color, thickness), 

respiration, the perfusion phenomenon, viscosity and 

viscoelasticity properties of the arteries, arterial stiffness, 

and the reflected waves from peripheral sites that amplify 

and modify the form of the wave [3] [4] [5]. 
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This signal has been used in a wide range of medical 

equipment for measuring oxygen saturation in the blood, 

blood pressure, cardiac output, to assess autonomic function, 

and detect peripheral vascular diseases [1]. In order to have 

this capability, the equipment must have tools to allow for 

the manual or automatic location of the fiducial points on the 

PPG signal. 

 

Traditionally, detection of the systolic peak (maximum 

value) of the PPG signal has been used to obtain indicators 

from which one is able to estimate the arterial stiffness 

index, pulse wave velocity (PWV), pulse wave transit time 

(PWTT), and heart rate variability (HRV). These parameters 

have allowed for the assessment of the vascular effects of 

aging, hypertension, and atherosclerosis [6] [7] [8]. Other 

notable applications in which PPG peak signal detection has 

played a key role, are related to the measurement of 

baroreflex sensitivity [9], diagnosis of damage to the arteries 

[10], as well as diagnosis of peripheral vascular disease [11], 

ventricular ejection time, and arterial stiffness [12].  

 

Therefore, peak detection has become an important tool for 

signal analysis of PPG in the time domain element. 

Furthermore, many studies have found that HRV, extracted 

from the PPG signal can be used as an alternative and 

reliable measure of HRV [13] [14] [15] [16] [17] [18] [19]. 

Even though there are methods of obtaining the HRV by 

detecting R peaks in the electrocardiographic signal (ECG) 

which have proved to be accurate and reproducible [20] [21] 

[22] [23] [24] [25] [26] [27], there is no much information 

regarding the methods for obtaining the HRV from the 

construction of pulse to pulse time-series based on detecting 

fiducial points in the PPG signal [15] [17] [19]. Many of the 

algorithms used for the detection of the peak in the PPG 

signal employ multiple stages of complex processing and 

have additional further disadvantages when they employ 

additional variables such as heart rate in order to set the 

logical criteria in decision making, which adds more 

complexity to the process [28]. 

 

Other algorithms based on thresholds are able to process the 

minimum and maximum amplitudes in the PPG signal at 

certain time intervals but have the limitation of not being 

able to distinguish the difference between the peak of the 

incident wave and the reflected wave when the amplitude of 

the latter is comparable to the first and is temporarily close 

[29]. In the absence of suitable algorithms, PPG signals end 

up being recorded manually in order to obtain the desired 

components (peaks), and in other cases the algorithms that 

have been developed do not reach the desired performance, 

the generality and the robustness required for analysis. 

Whereas other types of signals and analyses are successful, 

such as ECG [28] [6] [29] [30]. 

 

In [31] is proposed a method to pulse onset, systolic peak 

and dicrotic notch detection on the arterial blood pressure 

(ABP) waveforms. This approach is based on zero-crossing 

point of the first derivative of ABP signal, combined with 

amplitude and time adaptive threshold makes a final 

decision about the correct position points. This method 

presents suitable values of sensitivity, positive predictivity 

and error rate for onset and systolic peak detection. 

However, it can be affected by noise and artefacts present in 

the ABP signal. Nowadays, most of automatic methods used 

for pulses onset detection without R peaks as reference are 

affected by reflected waves, fluctuations and noise of the 

baseline, motion artefacts, high amplitudes variations due to 

respiration and others physiologic process, and others. 

Furthermore, the gold standard for onset definition does not 

exist [32] [33]. 

 

The following work uses the dynamic temporal sequence 

alignment to adjust or contract the different registered 

segments of the PPG signal in order to determine the 

maximum value of each of the waves that make up the 

registered signal and thereby obtain the HRV this way. The 

method makes a temporary (local) signal alignment of the 

PPG, in order to temporarily file the signal data into an array 

belonging to the waveform of each registered signal [34] 

[35]. In this way it could recover the timing with the 

maximum amplitude values of the pulse waves without 

using other reference signals. 

 

2.  Background  

 
In the field of biosignal analysis, it is very common to 

compare between two or more sequences in order to find 

similarities between them or temporal correlation derived 

from the behavior of the analyzed data. Thus being able to 

generate the proper development of the alignment process of 

a large amount of sequence data using a pattern as a 

reference point in order to find similarities between the used 

reference point pattern and the sequence being analyzed at 

specific moments in time [35]. The local alignment 

algorithm optimized by Gotoh [36] through the use of 

dynamic programming [37] combines the information stored 

in matrices and the analyses of the data coming from 

different neighboring areas (diagonally, above, and below) 

of each specific data point. 

 

As a consequence of that the algorithm uses the data points 

stored in the pointer array (Ptr) in order to keep a record of 

the origin of the maximum occurrence value caused by the 

alignment or comparison between a sample of the pattern 

and the signal being analyzed. This process is repeated until 

all waves are reconstructed after the alignment. 
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3. Methods  

 
The method is based on the following steps in order to 

achieve the individual segmentation of the PPG waves, as 

well as for the extraction of their maximum amplitude 

values.  

  

a. Score Analysis: analyzes the slopes of the waves 

that make up the signal, with the objective of being able to 

evaluate how similar the pattern sample and the analyzed 

signal are (sequence).  

 

b. Alignments: performs a search initiating at the 

generated signal in the last row of the dynamic programming 

M matrix, in order to find the coordinates where the scores 

reached their maximum value, and it also generates an 

umbrella for the signal in order to reconstruct all the waves 

of the PPG log. 

 

c. Reconstruction: Once located the maximum scores 

generated indexed by the local alignment algorithm, a 

reconstruction is done by source of generation of each peak 

in each of the samples. 

 

Achieving an adequate umbrella for the generated signal in 

the last row of the M matrix, allows us to effectuate an 

optimal reconstruction [36] [35]. 

 

 
 

Figure 1 The signal corresponding to the last row of the 

dynamic programming M matrix. 

 

 

 
 

Figure 2 Aligned PPG waves. 

 

4. Results and discussions 
 

Figure 1 shows the contents of the M matrix after the 

alignment between all the segments of the PPG signal and 

the pattern signal. Taking into consideration that the last row 

of said matrix contains in itself both the representation 

between the alignment of the pattern signal and each wave 

of the signal, it was possible, by applying a thresholding 

process, to find the initialization coordinates of where the 

reconstruction started for each individual wave that made up 

the log registry. 

 

After the reconstruction the alignment and indexation of the 

waves was obtained and it is shown in Figure 2, and from 

these results, it was possible to obtain the maximum values 

of the PPG waves, shown in Figure 3. 

 

 
Figure 3 Location of the maximum amplitude values in the 

PPG logs. 

 

Table 1 Variability results. 

Waves Temporal differences of the maximum 

values of the PPG waves (seg) 

1-2 0,83 

2-3 0,877 

3-4 0,779 

4-5 0,772 

5-6 0,923 

6-7 0,951 

7-8 0,805 

8-9 0,847 

9-10 0,886 

10-11 0,787 

11-12 0,771 

12-13 0,773 

13-14 0,73 

14-15 0,686 

15-16 0,796 

16-17 0,876 

17-18 0,759 

18-19 0,827 

19-20 0,995 

20-21 0,808 

21-22 0,816 

22-23 0,921 

23-24 0,829 
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Figure 4 Temporal variability of the PPG waves obtained 

from the calculated maximum values. 

 

After obtaining the maximum values of the PPG waves, the 

temporal difference between waves were quantified (Table 

1), and through the reconstruction of this variability curve it 

was possible to develop the variability graph shown in 

Figure 4. 

 

5. Conclusions 

 
The application of the dynamic temporal sequence 

alignment method applied to PPG signals allowed for the 

individual segmentation of the log records of 

photoplethysmography measurements and the acquisition of 

the maximum values associated with each of the wave 

values that made up said log registry records. 

 

These maximum values in turn allowed the construction of 

the temporal variability of the PPG signals, showing the 

potential that this method may have in applications where an 

analysis of the modifications is required for the occurrences 

of the pulse wave for diagnostic purposes. The results show 

a simple way to find the maximum values of SpO2 signal, 

also providing that once rebuilt all signal waves and indexed 

data in a matrix, they will be more readily available to do 

some other type quantifications on the SpO2 signal. This 

method could be used to calculate clinical parameters 

derived pulse wave such as pulse transit time, without using 

time reference markers obtained from the record of other 

signals as electrocardiogram. 
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