
 DOI: http://dx.doi.org/10.18180/tecciencia.2017.22.6

*Corresponding Author.

E-mail: jeespinosa@elpoli.edu.co

How to cite: Espinosa-Oviedo, J. E., Mazo-Zuluaga A., Gómez-

Montoya, R. A., Kernel Methods for Improving Text Search Engines

Transductive Inference by Using Support Vector Machines,

TECCIENCIA, Vol. 12 No. 22, 51-60, 2017

DOI: http://dx.doi.org/10.18180/tecciencia.2017.22.6

Kernel Methods for Improving Text Search Engines Transductive

Inference by Using Support Vector Machines

Métodos de Kernel para Mejorar la Inferencia Transductiva de Motores de Búsqueda de Texto

Usando Máquinas de Soporte Vectorial

Jorge E. Espinosa-Oviedo1*, Abdul Zuluaga-Mazo1, Rodrigo A. Gómez-Montoya1

1Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia

Received: 29 Feb 2016 Accepted: 6 Feb 2017 Available Online: 23 Feb 2017

Abstract

This paper is intended to present the implementation and testing methodology of Transductive Support Vector Machines

(TSVM) proposed by Joachims et al., and extended by Li et al. Initially, Support Vector Machines are explained as optimal

classifiers, along with the concept of transductive inference. Along the implementation process, several tests were performed.

The data used for such tests was very diverse especially with respect to the dimensionality (number of samples, features, etc.).

The ultimate objective was the evaluation of the transductive inference tool in the already developed Intelligent Interface Web

Engine from the SISTA group at the Catholic University of Leuven (Belgium).

Keywords: Support Vector Machines, Text Classification, Transductive Inference, Data mining.

Resumen

Este artículo muestra la implementación y metodología de pruebas de Máquinas Transductivas de Soporte Vectorial,

propuesta por Joachims et al., y extendida por Li et al. Se explican las Máquinas de Soporte Vectorial como clasificadores

óptimos, junto con el concepto de inferencia transductiva. Durante el proceso de implementación, varias pruebas se realizaron.

Los datos para estas pruebas fueron diversos, especialmente respecto a la dimensionalidad (número de muestras,

características, etc.). El objetivo final fue la evaluación de la herramienta de inferencia transductiva en el Intelligent Interface

Web Engine desarrollado por el grupo SISTA de la Universidad Católica de Leuven (Bélgica).

Palabras clave: Máquinas de Soporte Vectorial, Clasificación de Textos, Inferencia Transductiva, Minería de Datos.

1. Introduction

The current society of information is facing a new challenge:

Thousands of Megabytes of information are available not

only in the public Internet but also in private networks. This

information is used continuously, but tools for accessing and

manipulation of data do not fulfill the expectations of the

users, hence efficient tools are becoming a necessity.

Text classification becomes a key tool in order to deal with

such amounts of information. Text classification can be used

to organize document databases, filter Spam from e-mail

accounts, or even to learn user’s news reading preferences.

Search engines for On-line information are a kind of text

classifier but they often retrieve results far from perfect.

http://dx.doi.org/10.18180/tecciencia.2017.22.6
mailto:jeespinosa@elpoli.edu.co
http://dx.doi.org/10.18180/tecciencia.2017.22.6

52

Most of the results obtained are irrelevant, and in many cases

the number of results and their ranking is far from the

desired criteria. Techniques derived from Artificial

Intelligence and Machine-learning theory have contributed

to the improvement of such search engines, leading to better,

faster and more accurate results. Kernel methods have

become one reliable and robust technique well suited to deal

with high dimensional problems, ideal for facing text-

mining tasks. More precisely, the Support Vector Machines

have been tested in such tasks leading to interesting results.

These results have been obtained based on the paradigm of

Inductive Inference. This paper contains the results of an

application of Support Vector Machines to text classification

but now based on the paradigm of Transductive Inference.

The following article is composed of the following sections:

Inside the section of methodology we are to going to

describe the theoretical background that is necessary to

understand the research. The section 3 express experiments

and results and discussion of them. Finally in section 4 we

describe the different conclusions obtained from the

research process.

2. Methodology

2.1 Text Classification

Text classification in the context of machine learning is a

supervised learning approach oriented to create classifiers

that automatically classify documents into a fixed number of

semantic categories. Since each document can exist in either

one, multiple or no category, to facilitate the task, each

category is treated as a separate binary classification

problem. Every document is a collection of string of

characters. Such collection has to be transformed into a

representation suitable for learning algorithms and

classification. The Stemming tool helps to obtain such

representation. The stem of a word is the canonized element

of the word. That is the removal of word suffixes such as

plurals, tenses, and deflections. In a given engine this stem

representation is robust to spelling errors, but have the risk

of returning irrelevant items. In order to obtain an attribute-

value representation of a text, each word is counted within

the text and its attribute is related as a feature in the vector

representation.

This attribute is known as time-frequency TF (wi,x). The

word wi exists x times in the given document. But this model

is inaccurate in the sense that it assigns more weight to the

word that is more frequently found in the entire document.

The problem is that these words tend to be “stop words”.

Stop words are words that always are present in a document

such as articles “The”,”a” and connectors such as “and”, etc.

For this reason, a more adequately model is the tf-idf model

(Term frequency – inverse document frequency) that counts

the frequency of every word but also takes into account the

frequency of the particular word in the entire document

collection. The term vi,j is the weight of index term j in the

document i. Such term is weighted for the tf-idf model as

follows:

𝒗𝒊,𝒋 = 𝒇(𝒊, 𝒋) 𝒍𝒐𝒈 (𝑵 / 𝒏𝒋)

Where f(i,j) describes the term frequency of index term j in

the document i. N denotes the number of documents in the

entire collection and nj is the number of documents that

contain the index term in their description. For the SISTA

database, the model adopted was the tf-idf model [1].

The measure used in this project to evaluate the performance

for text classification is Precision/Recall [2] [3]. Precision is

the probability that a document predicted to be in class “+”

truly belongs to this class. Recall is the probability that a

document belonging to class “+” is classified into this class.

2.2 Support Vector Machines

Support vector machines were developed by Vladimir

Vapnik, based on the principle of Structural Risk

Minimization: To find a hypothesis h from the hypothesis

space H for which one can guarantee the lowest probability

of error, for a given training example. The aim is to find the

classifier or discriminator function that maximizes the

distance within classes, assuring the lowest probability of

error. This is used to classify a set of l training examples

{ x


i,yi}, i=1,2,3…,l. Each example has d features

 d

i Rx 


, for instance in a two-dimensional data input d

= 2. Each of the examples has a class label with one of two

values  }1,1{iy . In some cases, the discriminator

function is constructed using a hyperplane in the space Rd.

Any hyperplane can be parameterized by a vector orthogonal

to the separating hyperplane (w


), and a constant b (bias).

0 bxw


 (1)

The classification function is given by the expression:

}{)(bxwsignxh 


 (2)

If the data is linearly separable this function will separate the

data in a perfect way, and the function (2) will show the

following property.

  ii ybxwy  0


 (3)

Multiple hyperplanes fulfil this requirement however the

aim of the support vectors machines is to construct an

optimal hyperplane that maximizes the geometric distance

53

in the close data points, which is called the margin. (¡Error!

No se encuentra el origen de la referencia.)

Figure 1 “Linear classification: definition of a unique

separating hyperplane illustrate in a two-dimensional input

space. The margin is the distance between the dashed lines”.

Source [4].

If we want to maximize the decision margin we should

minimize the quadratic norm of . The minimization of a

quadratic cost function is a convex optimization problem

and there are efficient numeric methods to solve it. This is a

fundamental advantage of the SVM with respect to

“traditional” neural networks such as the Multi-layer

Perceptron whose optimal solution is only obtained by

solving a non-convex optimization problem. Then

optimization of the decision margin is formulated in the

following way:

2

2

1

),(

min
w

bw


 (4)

Subject to:   1:1   bxwyi

n

i



Introducing the Lagrange formulation:

min () max min () ()

Subject to: () 0 Subject to: 0

x x

f x f x g x

g x






 
 

 

Hence, writing our optimization problem in terms of

Lagrange we get:

 
,

1

(, ,)

1
max min 1

2

subject to 0

N

i i i
w b

i

J w b

w w y w x b










      




 (5)

The conditions for the minimum of J in the variables w


and

b are:

 (6)

 (7)

Replacing (7) and (6) in (5) yields,

 
1

max 1
* * * 1

2

N

i i i

i

w w y w x b
 

       (8)

From (6) we obtain

 
1

*
N

i i i

i

w y x


 

Replacing in (8) gives:

1 1 1

1
max

2

Subject to: 0

N N N

i j i j i j i

i j i

y y x x


 



  

  



  
 (9)

This is equivalent to

1 1 1

1
min

2

Subject to: 0

N N N

i j i j i j i

i j i

y y x x


 



  

 



  
 (10)

The main advantage of the Support Vector Machines is that

we can solve this problem as a QP problem, the optimization

problem could be written in the following form (Here in

matrix notation):

1
min

2

0
 to

0

T T

x
x Hx F x

Ax b
Subject

Gx d



 

 

 (11)

Taking into account that in our case x= our optimization

problem in terms of QP is as follows:

w


 *

1

(, ,)
0

N

i i i

i

J w b
w y x

w






  
   

  


1

(, ,)
0

N

i i

i

J w b
y

b







  




54

xTHx =
 

1 1 1 2 1 1

1

1 2

... 0 0

... : . : : . : . : :

0 0 ...

T T T

i N i

N

T T T

N N N N N N N

y x x x x x x y

y x x x x x x y



 



      
      
      
            

 
1 1

N N
T

i j i j i j

i j

y y x x
 

 

FTx =   





















N

i

i

N

1

1

:1...11 





The restrictions are as follows,

0

0

:

0

:

1...0

:.:

0...1 1





















































N



  0 bAx

And G=[0] d=[0].

2.3 Transductive Inference

The method used to train Support Vector Machines belongs

to the class of inductive inference methods. In this class of

methods, particular examples are used to infer the general

concept. The learner induces a decision function with a low

error value on the whole distribution of the examples used

during the learning phase. But in most of the situations, we

don’t care about the particular function; we only need to

classify a given set of examples (i.e. test set) with as few

errors as possible. The transductive inference [2] uses the

training examples previously labelled and the unclassified

examples to generate an optimal partition and labelling of

the unclassified examples, using the prior knowledge

provided by the distribution of the unclassified examples.

Inductive inference generally claims for an enough amount

of training data in order to determine the decision function.

But for many practical uses of text classification, it is crucial

to the learner to be able to generalize using little training

data. Transductive inference tackles the problem of learning

from small training samples [2]. This concept has been

extended in recent developments by Li et al. in [3].

Some of the applications for the transductive text-

classification are the following: Relevance Feedback: Used

in most the customizable interfaces of the current RSS

sources. After an initial query made by the user, he marks

the retrieved documents as relevant or irrelevant. This

composes the training set of the application. The remaining

documents in the database are the test set. From this

information, the learner has to classify the test set as relevant

or irrelevant documents to the query. Netnews Filtering:

Since there are thousands of topics available in the everyday

net news. The user is interested obtaining the relevant

information for his profile according to few labelled news

selected during previous visits to the newsgroup.

Reorganizing a document collection: Nowadays

organizations are using databases of documents with

classification schemas.

When one new category is created a text classifier must

perform a full classification of the entire collection of

documents given very few training examples. Observe that

all applications have in common little training data but large

test sets. More recently they has been implemented in

problems with unbalanced data sets [5].

2.4 Transductive Support Vector Machines

Section 2 showed that SVMs are well suited for a learning

task of the form

P(x


,y)=P(y| x


)P(x


)

The learner L is given a hypothesis space H of functions

 : 1,1h X   and independent identically distributed

sample Strain of n training examples

1 1 1 2(,),(,),..., (,)n nx y x y x y (12)

Where each training example consists of a document vector

and a binary label. In the transductive setting, the learner is

also given an i.i.d. sample Stest of k test examples.

* * *

1 2, ,...., kx x x (13)

The goal of the transductive support vector machine

(TSVM) or transductive learner is to select a function

hL=L(Strain,Stest) from the hypothesis space H using Strain and

Stest such that the expected number of erroneous predictions

on the test and the training samples is minimized. But, why

not use the learning rule obtained by means of the training

examples to classify the test examples? The problem arises

when a small training set is used. The classifier will have a

“poor” generalization due to the lack of knowledge about the

distribution of points in the space X. Finding the k binary

values
**

1 ,..., kyy based on the classifier estimated with very

few points will lead to disappointing results.

55

Unlike of the inductive setting, the transductive setting uses

the location of the test examples when defining the structure.

Such structure corresponds to a structure of possible

hypothesis solution. Using prior knowledge about the nature

of P(x,y) provides extra information to build an appropriate

structure and learn more quickly. The structure is build based

on the margin on both the training and the test data. For

linearly separable problems, the transductive learning can be

achieved by solving the following optimization problem.

OP 1 (Transductive SVM (lin. sep. case)

Minimize over (bwyy k ,,,..., **

1


):

2

2

1
w


 subject to:

  1:1   bxwy ii

n

i


 and   1: **

1   bxwy jj

n

j



The solution of this optimization problem is not only the

separating hyperplane  bw,


 but also the labeling of

the test set
**

1 ,..., kyy (Fig. 2).

Most text-classification problems are linearly separable [2],

but sometimes the data is non-separable by a linear function,

then we can introduce slack variables i to allow some

misclassification, as we do in the inductive SVM. If a

training example lies on the “wrong” side of the hyperplane,

the corresponding i will be greater than 0. Therefore

 

n

i i1
 is an upper bound on the number of training errors

[2].

 OP 2 (Transductive SVM (non sep. case)

Minimize over (
**

11

**

1 ,...,,,...,,,,,..., knk bwyy 


):





k

j

j

n

i

i CCw
0

**

0

2

2

1



 subject to:

  iii

n

i bxwy   1:1


 and

  ***

1 1: jjj

n

j bxwy  



0:1   i

n

i  and 0: *

1   j

n

j 

Where C and C* are the regularization parameters. They

allow trading off margin size against misclassifying training

examples or excluding test examples. Small values for C and

C* will “tolerate” a number of training errors, while a large

value for this parameters leads to a behavior similar to the

linearly separable case OP1.

When we train a transductive SVM we are solving the

(partially) combinatorial optimization problem OP2. For a

small number of test examples, it could be done manually,

trying all possible assignments

**

1 ,..., kyy
 to the two classes,

but it becomes intractable when the data set has more than

10 examples. The algorithm proposed by Joachims [2] is

designed to handle large test sets common in text

classification with more than 10.000 test examples. It found

an approximate solution to the optimization problem OP2

using a form of local search.c.

Figure 2 The maximum margin hyperplanes.

Positive/negative examples are marked as +/- test examples

as dot, the dashed line is the solution of the inductive SVM,

the solid line shows the transductive classification. Source:

Authors, modified from [2].

Figure 3 Algorithm to train Transductive Support Vector

Machines, by Joachims [2].

56

The key idea of the algorithm is that it begins with a labeling

of the test examples done by means of inductive SVM. Then

it improves the solution by switching the labels of the test

examples such that the cost function decreases. It takes the

training and the test examples as input and output the

labeling for the test example and a model created by means

of the inductive inference.

Besides the two parameters C and C* the user can define the

number of test examples (num+) assigned to the class +. This

allowed a trade-off between recall-precision. The algorithm

is summarized in Fig. 3. It starts with the classification of

the test examples based on the inductive approach. Then it

uniformly increases the influence of the test examples by

increasing the cost factors
*

C and
*

C up to the upper bound

C* (loop 1) defined by the user. The algorithm uses an

unbalanced cost of
*

C and
*

C to keep ratio num+. Loop

2 identifies two examples such that the switching of their

labels leads to a decrease in the current objective function.

The function solve_svm_qp refers to the quadratic program

to solve the inductive problem and is presented in the

following lines:

OP 3 (Inductive SVM (primal)

Minimize over (
*,,, bw


):













1:

**

1:

**

1

2

**2

1

jj yj

j

yj

j

n

i

i CCCw 


subject to:

  iii

n

i bxwy   1:1


 and

  ***

1 1: jjj

n

j bxwy  



2.5 Why are Transductive Support Vector Machines well

suited for Text-classification?

The following are special properties that every text-

classification task have, such as High dimensional input

space, Document Vectors are sparse and few irrelevant

features [2]. Joachims argues that TSVMs are well suited

and even outperform many of the traditional approaches for

text-classification. Intuitively it can be explained by the fact

that the transductive learning inherits most of the desirable

properties of the inductive learning. TSVMs take advantage

of the fact: that words occur in natural language in strong

co-occurrence patterns [2]. Some words are more likely to

occur together in a document than others. For example,

when we ask a search engine like Google® for the words

paint and sculpture it returns 25.300.000 web pages. When

we ask for documents with the words paint and

mathematics we get only 15.200,000 hits, although that

mathematics is a more popular word in the web than

sculpture. This co-occurrence is the previous knowledge

that the TSVM exploit on the learning task.

3. Results

3.1 SVMLight vs . MatlabTM

Thorsten Joachims has developed SVMlight [6] that is an

implementation of TSVM for the problem of pattern

recognition, for the problem of regression, and for the

problem of learning a ranking function. We evaluated the

performance of this application against our version made in

MatlabTM [7]. The MatlabTM version overcomes

SVMlight in an example where from a gaussian distribution

we drew 100 data points. All the data points were previously

labelled into a positive and negative class (50+/50-). The

data distribution is linearly separable and the learning

machine was trained with 15-labeled examples as training

set and 85 as test set. Joachim’s application is oriented to

work with large data set with many features rather than with

a two-dimensional feature vector. While the MatlabTM

version reaches the perfect classification of the test examples

with Precision/Recall = 100%/100% (Fig. 4), the SVMlight

version working on the same set with the same parameters

(RBF kernel sigma=50 ad C=0.1) gives a measurement

Precision/Recall = 73.1707%/100%. Giving 96% of

accuracy on the test set (11/85). There were found 11 false

positives examples by means of SVMlight (Fig. 5).

Figure 4 MatlabTM version Precision/Recall = 100%/100%

With C and C*= 0.1.

57

Figure 5 SVMlight version. Precision/Recall =

73.17%/100%.

The advantage of SVMlight is its performance speed on

tasks of high dimensional vectors as text classification. This

characteristic will be described further.

3.2 Reuters

Given a set of 610 examples that correspond to Reuters’s

articles, we have to found those that correspond to

“Corporate Acquisitions”. With only 10 examples as

training examples labelled 5 as positives and 5 as negatives,

the TSVM must classify the remaining 600 test examples.

The SVMlight algorithm is trained with this set of examples.

Parallel to this we must tune certain parameters. The work

with SVM demands to tune certain parameters, then some

questions arise: Which kernel we can choose? What criteria

for the generalization parameters C?. What amount of

positives examples (num+) can we assign when we enter into

loop 1 of algorithm? Demonstrations done by Joachims have

shown that “non-linear SVMs do not provide any advantage

for text classification using the standard kernels” [2]. So for

this task, we work with a linear kernel. The best value of C

depends on the data and must be determined empirically.

The effective range of the C depends on the Euclidian length

of the feature vectors. A good starting point of exploration

is [2].

We let SVMlight calculate C. The value of num+ regularly

is the ratio of positives examples in the training data [2].

Finally, SVMlight employs only 40.42 seconds in the

evaluation and creation of the model (SVM) and 1 second

performing the predictions for the 600 examples. The results

show 13 False Positives and 11 False Negatives. This gives

us a measurement of Precision/Recall = 95.6667%/96.33%,

giving 96% of accuracy on the test set (24/600). In order to

evaluate the performance of the MatlabTM version of the

TSVM algorithm, we test it with the Reuters task. The

algorithm took 26.06 minutes computing and generating

predictions for the test data. The results show 19 False

Positives and 4 False Negatives. This gives us a

measurement of Precision/Recall = 93.667%/98.6667%,

giving 96.1667% of accuracy on the test set (23/600). This

slightly improvement does not mean any significant advance

in terms of results obtained. What is notoriously highlighted

is the speed performance of the algorithms: 40.42 Seconds

of the SVMlight against 26.06 minutes of the MatlabTM

implementation. From this, it is clear that the SVMlight

implementation is better suited for text-classification tasks.

To automatically define the parameter C was implemented a

function that computes C as the results of [avg. x*x]-1.[2][6].

With the data of the Reuters task, this function gives a value

for 1.0033 1 C C  . Different tests were made in

order to evaluate the accuracy of such function. Table 1

describes the results obtained when C parameter is changed.

Table 1 Reuters results with different values for the

regularization parameter C. Source: Authors

C Precision Recall False

P+

False

N-

0,05 47,3333 99,6667 158 1

0,10 59,3333 99,6667 122 1

1,00 93,6667 98,6667 19 4

5,00 96,0000 96,6667 12 10

10,00 96,0000 96,6667 12 10

1000,00 0,0000 100,0000 300 0

Note that the best results are reached when the parameter

C=1,00. This value corresponds to C calculated by means of

the function described before. This function performs the

calculation of C as Joachims suggest in his book [2].

Our MatlabTM implementation of the TSVM algorithm

works adequately. The only drawback is response times.

Computationally speaking the bottleneck of the TSVM

algorithm is the optimization task, which has to be solved

with quadratic programs (QP). We obtained worse results

working in the different tests of above (toy example

included) with the native QP solver of MatlabTM. For this

reason, we adopt the QP solver LOQO [8]. LOQO was

developed at the Princeton University NJ, and thanks to that

it is pre-compile, the response times were notoriously

improved. For instance, the toy example was performed

using LOQO in 12.8480 seconds with an average of 0.1810

seconds per iteration.

)/(
1 i

n

i i xxnC   

58

Table 2 Results obtained in the Reuters task with different amount of subsets. First column depicts the split criteria. Second

and third column illustrate the measurements of Precision/Recall. The fourth column shows the times employed solving the

task. The fifth column shows the times of the solve_svm_qp function. In the sixth column, the C parameter of each task is

depicted. In the last column appear the number of iteration done until the upper bound C* is reached.

No.

Examples

Precision Recall Time

Employed

(Mins)

Avg.

time/Iteration

(Secs)

C/C* No.

Iterations

600 93,6667 98,6667 26,0608 15,1812 1.00329 17

300 66,3333 96,3333 6,3590 2,6140 1.00000 17

150 72,3333 91,3333 2,4931 0,4600 1.00000 17

75 79,3333 93,6667 2,1069 0,1000 1.00000 17

50 87,3333 90,3333 2,2259 0,0300 1.00000 17

25 89,6667 90,3333 3,3831 0,0100 1.00000 17

While using the QP solver of MatlabTM it employed 3

minutes 18 seconds with an average of 12.4980 seconds per

iteration. It was the main reason why we adopt LOQO as QP

solver in order to perform the Text classification tasks

On Table 2 we can see also the improvements on response

times. The splitting criteria allow us to go from 26 minutes

employed in the original (600 examples) to only 6 minutes

in the first split group with the half of the examples (300),

and even better times in the other groups.

The improvements in the response times can be explained

due to the fact that we are performing less computation in

the construction of the linear Kernel (x x), this also

involves the computation of the Hessian in the optimization

problem (OP3).

Splitting the test examples we can obtain better results in

response times, but it means also a sacrifice of

precision/recall in the entire task. It can be overcome if we

divide considerably the test set. So we have to find the trade-

off between precision/recall and response time.

3.3 SISTA Database

The SISTA database corresponds to the model that describes

the ESAT library. This database has been built by the text

mining group of SISTA (Research division of the

department of Electrical Engineering (ESAT) at the KU

Leuven) [1]. This model includes a feature vector

representation of each book as well as various database

tables that allow the research process in text–mining.

In order to apply the TSVM algorithm to the SISTA library,

the entire collections of books (1429 Titles) are loaded to the

MatlabTM environment. In the first test, we worked with the

table ix_library_v1 that have the indexed data including stop

words [1].

For the creation of the training examples 10 records were

labelled as positives, and they were selected among the

books that have the word “Control” in his title. On the other

hand, 11 examples that have the word “Learning” were

selected as negatives examples. We then evaluated the

TSVM algorithm, looking for the classification of the 1408

test examples based solely on the 21 examples of training

and the position of the test examples.

The TSVM algorithm took 3 hours (201.99 minutes) in

solving the classification task. This process was run on a

computer with Intel Core 2 Duo processor of 2 GHz with 2

GB of RAM. Which make it unreasonable to implement in

a Web search engine, where the response times are expected

to be minimum.

In order to verify the results, we integrate the tool in the

intelligent interface web engine. In such interface, we typed

the word “Control” trying to find the books in the test

examples that have this word in his title. 213 titles are

retrieved (Fig. 5).

Evaluating the results of the classifier, the web interface

allows searching within the positive classified examples. We

performed the same search of above and 204 of the total 213

books were retrieved.

59

Apparently, 9 books were labelled as false negatives for the

classifier. Now, analyzing this book titles we see that the

field of “Description Quality” not has any information for 7

of the 9 titles.

A missing quality label means that a review was not found

on the internet by the web crawler or because Amazon.com

did not have a review available for the book (this is the case

for 207 books, e.g. because it is a Dutch book) [1].

The other two examples have been scored with “4” meaning

that the review is no reliable (see above); in fact, one of the

books is in Dutch what excludes it of any possible

classification. The remaining book has the title:

“Evolutionary Learning Algorithms for Neural Adaptive

Control” Indeed this book fall more in the negative class

where 10 books with the topic “learning” were selected as

training examples.

These results show interesting clusters found within the

SISTA library. The above experiment proves that the

algorithm performs good classification of the books with

this small quantity of examples. The only drawback still

being the response time that continues making impractical

the application.

 Table 3 shows different test made in order to overcome the

response time problem. As in the Reuter experiment, the test

set is split into different groups. The subset or groups are

now of 500, 250 and 125. Note the improvements in times

of response (“Time employed”,”Avg time/Block” and “Avg

time/iteration” columns).

Outstanding changes are depicted in the results: the amount

of examples that diverge with the original classification are

counting in the “Diff W.R.T. 1408” column. On it we can

see that the smaller the group of examples the greatest the

difference in the results. The number of iterations as C

parameters does not change in any of the experiences. It is

logical: since the upper bound of the loop 2 of the algorithm

(that controls the number of iterations) is given for C*.

The same example was run in the SVMlight [6]. The results

show 670 examples classified as positives.

Figure 6 Search results for the word “Control" in the test

examples. – See text for details

The interesting thing here is that there are 50 examples

differently classified by this software. Searching in the

classified positives examples for books with the word

“Control” in his title, the retrieval results were different.

This software only classified 139 examples with the word

“Control” as positives examples.

The main advantage of this application is that it takes only

10 minutes in order to solve the problem. But still being

impractical to implement in a web search engine. Further

analysis on this data becomes difficult because we do not

have model examples of classification.

A copy of the code can be found in [9].

4. Conclusions

When we look back at the initial goal of the project, we think

we can say that we succeeded in meeting the main

requirement. We have implemented a kernel classifier based

on the transductive inference methodology. We were able to

implement the transductive induction by means of the

TSVM algorithm of Joachims [2].

Table 1 Split strategy for SISTA database task.

No.

Example

Positives Negatives Diff

W.R.T.

1408

Time

Employed

(Mins)

Avg.

time/Bloc

k (Secs)

Avg time/

Iteration

(Secs)

C/C* No.

Iterations

1408 704 704
0

201,99 201,99 20,51 1 17

500 642 766 288 2,3675 50,93 0,95 1 17

250 680 728 342 0,55 5,44 0,155 1 17

125 768 640 404 0,707 3,68 0,054 1 17

60

The fact of being able to classify all a set with few examples

of training makes of this algorithm a solution for the huge

task of organising and index the huge amounts of data

available in the actual information society.

Thanks to the different types of examples with which we

could evaluate the TSVM algorithm (see Fig. 3), we can say

that it fulfills the expectations and completes the

classification tasks with relative accuracy.

One of the main advantages of TSVM is that it does not have

to tune many parameters as traditional SVM. The kernel

selection is straightforward because “non-linear SVMs do

not provides any advantage for text classification using the

standard kernels” [2]. The parameter of regularization “C”

is calculated heuristically and taking into account the data of

the particular task. This strategy proved to be effective.

Finally, the number of examples assigned to the positive

class (loop 1of the algorithm) in most of the cases

corresponds to the half of the test data.

The only drawback found in the TSVM algorithm was the

response time. In order to solve it, the splitting strategy was

implemented. This solution solves the problem of the

response time but sacrifices precision/recall. This is logical

since the algorithm evaluates the totality of the test examples

in order to define the final optimal classifier. If we train each

of the TSVM on a smaller test set, we are not exploiting the

'Transductiveness' to the full extent. This reflects in a

reduced performance.

Working with the SISTA database, the algorithm completed

the task after 3 hours, which made impractical the

integration done in the already developed Intelligent

Interface Web Engine [1] from the SISTA group. A search

engine on Internet demand reasonable response times and a

delay of 3 hours is unthinkable in a web system. Even for

the most patient of the users.

We recommend for further implementations try to use a

parallelized strategy, in order to optimize the multiples core

that the Processors technology of nowadays offers. Once the

algorithm is parallelized, it can also be evaluated in

platforms as MathWorks Cloud which is powered by

Amazon EC2 ® [10].

Acknowledgments

Thanks also to Joachims Thorsten for providing the

theoretical base for this project. This work was supported by

the SISTA Group of the KUL [1]

References

[1] Janssens Frizo, Spiessens Thomas – Design of an Intelligent Interface

– Interfacing a Bibliographic Database. Developed for the KUL - MAI
project in 2001-2002

[2] T. Joachims, Learning to classify text using support vector machines:

Methods, theory and algorithms. Kluwer Academic Publishers, 2002.
[3] G. Li, S. C. Hoi, and K. Chang, ‘Two-view transductive support vector

machines’, in Proceedings of the 2010 SIAM International Conference

on Data Mining, 2010, pp. 235–244.
[4] J. A. Suykens, T. Van Gestel, and J. De Brabanter, Least squares

support vector machines. World Scientific, 2002.

[5] E. Kondratovich, I. I. Baskin, and A. Varnek, ‘Transductive support
vector machines: Promising approach to model small and unbalanced

datasets’, Molecular Informatics, vol. 32, no. 3, pp. 261–266, 2013.

[6] ‘SVM-Light Support Vector Machine’. [Online]. Available:
http://svmlight.joachims.org/. [Accessed: 20-Feb-2017].

[7] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy, ‘Svm and

kernel methods matlab toolbox’, Perception Systmes et Information,
INSA de Rouen, Rouen, France, vol. 2, no. 21, 2005.

[8] ‘Download LOQO’. [Online]. Available:

https://www.princeton.edu/~rvdb/loqo/LOQO.html. [Accessed: 20-
Feb-2017].

[9] ‘muratayoshio/tsvm’, GitHub. [Online]. Available:

https://github.com/muratayoshio/tsvm. [Accessed: 10-Feb-2017].
[10]‘Parallel Computing on the Cloud with MATLAB - MATLAB’.

[Online]. Available: https://www.mathworks.com/products/parallel-

computing/parallel-computing-on-the-cloud/distriben-ec2.html.
[Accessed: 10-Feb-2017].

